The hot deformation behaviour and microstructural evolution of AISI 904L super‐austenitic steel has been investigated by means of hot compression tests. The tests were carried out on a Gleeble 1500D thermo‐mechanical simulator in the temperature range from 850 °C to 1150 °C and at strain rates range from 0.001 s−1 to 5 s−1. The microstructure evolution was examined by means of light optical microscopy (LOM). The results show that after an initial deformation hardening, softening mechanisms occur. The peak stress level decreases with increasing deformation temperature and decreasing strain rate, which can be represented by a Zener–Hollomon parameter in the hyperbolic‐sine equation with the activation energy for deformation of 463 kJ/mol. The steady state was achieved at maximum strain of 0.9 only at the lower strain rates (under 1 s−1) and the higher temperatures (above 1100 °C). Microstructural analyses showed a gradual increase in the dynamically recrystallized area with an increase of the temperature and a decrease of the strain rate. The grain size did change, as expected, correlating to the deformation conditions.
To improve the microstructure during casting, hot forming, and heat treatment of 30Cr10Ni duplex stainless steel, accurate data on the precipitation and transformation processes at high temperatures are needed. In this article, the precipitation and transformation processes at various aging times in the temperature range 873 K to 1573 K (600°C to 1300°C) were studied. The 30Cr10Ni ferrous alloy contains a relatively large amount of Cr, Ni, and C, which results in a complex microstructure. In addition to the ferrite, austenite, and sigma phase, the M 23 C 6 and MC carbides were also observed in the microstructure. The precipitation of the sigma phase was observed after just 3 minutes of aging, and after 30 minutes of aging at approximately 1053 K (780°C), its fraction exceeded 40 pct. An intensive austenite-to-ferrite transformation was observed above 1423 K (1150°C). Optical microscopy, energy-dispersive X-ray spectroscopy (EDS), electron backscattered diffraction (EBSD), and X-ray diffraction (XRD), as well as micro-indentation hardness, hardness, impact toughness, and tensile tests, were carried out to evaluate the obtained microstructures of aged samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.