Mutations in the charged multivesicular body protein 2B (CHMP2B) gene cause frontotemporal lobar degeneration. The mutations lead to C-terminal truncation of the CHMP2B protein. We generated Chmp2b knockout mice and transgenic mice expressing either wild-type or C-terminally truncated mutant CHMP2B. The transgenic CHMP2B mutant mice have decreased survival and show progressive neurodegenerative changes including gliosis and increasing accumulation of p62- and ubiquitin-positive inclusions. The inclusions are negative for the TAR DNA binding protein 43 and fused in sarcoma proteins, mimicking the inclusions observed in patients with CHMP2B mutation. Mice transgenic for mutant CHMP2B also develop an early and progressive axonopathy characterized by numerous amyloid precursor protein-positive axonal swellings, implicating altered axonal function in disease pathogenesis. These findings were not observed in Chmp2b knockout mice or in transgenic mice expressing wild-type CHMP2B, indicating that CHMP2B mutations induce degenerative changes through a gain of function mechanism. These data describe the first mouse model of dementia caused by CHMP2B mutation and provide new insights into the mechanisms of CHMP2B-induced neurodegeneration.
Intraperitoneal administration of ICSM18 and 35, monoclonal antibodies against prion protein (PrP), has been shown to significantly delay the onset of prion disease in mice, and humanized versions are candidate therapeutics for prion and Alzheimer's diseases. However, a previous report of severe and widespread apoptosis after intracerebral injection of anti-PrP monoclonal antibodies raised concerns about such therapy and led to an influential model of prion neurotoxicity via cross-linking of cell surface PrP by disease-related PrP aggregates. In extensive studies including ICSM18 and 35, fully humanized ICSM18, and the previously reported proapoptotic antibodies, we found no evidence of apoptosis, thereby questioning this model of prion neurotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.