In the parameter free approach, FE-based data are used as design variables, such as nodal coordinates and nodal thickness. During shape and thickness optimisation, this approach provides much design freedom for a limited modelling effort. Stress results are, however, very sensitive to the local shape changes that can occur during parameter free optimisation. When stress results are used as response function, this irregularity can complicate the optimisation. As a solution, the Kreisselmeier-Steinhauser function for the stresses is introduced as a response function for parameter free shape optimisation. In this function, the local stress results are aggregated to obtain a global measure of stress in a structure. This measure can be used as an objective to reduce the overall stress in the structure or as a constraint to limit the stress in the structure to a maximum allowable value. As a result, the optimal structures are smooth and material efficient. Several examples are presented in this paper to illustrate the use of the parameter free design approach in combination with the stress response function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.