Arenaviruses are rodent-borne viruses, with five members of the family capable of causing severe hemorrhagic fevers if transmitted to humans. To date, two distinct cellular receptors have been identified that are used by different pathogenic viruses, ␣-dystroglycan by Lassa fever virus and transferrin receptor 1 (TfR1) by certain New World clade B viruses. Our previous studies have suggested that other, as-yet-unknown receptors are involved in arenavirus entry. In the present study, we examined the use of TfR1 by the glycoproteins (GPs) from a panel of New World clade B arenaviruses comprising three pathogenic and two nonpathogenic strains. Interestingly, we found that TfR1 was only used by the GPs from the pathogenic viruses, with entry of the nonpathogenic strains being TfR1 independent. The pathogenic GPs could also direct entry into cells by TfR1-independent pathways, albeit less efficiently. A comparison of the abilities of TfR1 orthologs from different species to support arenavirus entry found that the human and feline receptors were able to enhance entry of the pathogenic strains, but that neither the murine or canine forms were functional. Since the ability to use TfR1 is a characteristic feature of the human pathogens, this interaction may represent an important target in the treatment of New World hemorrhagic fevers. In addition, the ability to use TfR1 may be a useful tool to predict the likelihood that any existing or newly discovered viruses in this family could infect humans.
The Clade B lineage of the New World arenaviruses contains four viruses capable of causing severe hemorrhagic fevers in humans. Within this group, the B1 sub-lineage contains the pathogenic viruses Junin (JUNV) and Machupo (MACV), as well as the non-pathogenic Tacaribe virus (TCRV). In order to elucidate differences that may determine pathogenicity, we studied the entry pathways directed by the glycoproteins (GPs) from these related B1 viruses, using pseudotyped retroviral vectors and GP1 immunoadhesin constructs. Our data revealed variations in the efficiency with which different cell types could be transduced by B1 vectors, and this correlated with the ability of the immunoadhesins to bind to those cells. Interestingly, the tropism directed by the TCRV GP proved to be distinct from that of JUNV and MACV, in particular on lymphocyte cell lines. In addition, the GPs showed variations in their sensitivity to an inhibitor of endosome acidification, with the TCRV GP again being the outlier. Together these data suggest that more than one entry pathway can be used by these closely related viruses and that the ability to cause human disease may be highly dependent on receptor usage.
Introduction: CD137L is a member of the tumor necrosis factor superfamily that provides a costimulatory signal to T cells. In this study, two novel CD137L fusion proteins were produced and compared with the CD137 agonist antibody 2A. Materials and Methods: Murine CD137L was linked to the COOH terminus of either the Fc fragment of immunoglobulin (untargeted version) or TNT-3 (targeted version), an antibody that binds to necrotic regions of tumors. Groups of mice bearing established Colon 26 tumors were then treated daily Â5 with each fusion protein or 2A to determine their immunotherapeutic potential. Results: Both fusion proteins retained CD137L activity in vitro and TNT-3/CD137L showed tumor-binding activity by biodistribution analysis in tumor-bearing mice. The fusion proteins also produced similar responses in vivo at the 1 nmol per dose range and showed a 60% (TNT-3/ CD137L) or 40% (Fc/CD137L) survival of treated mice at 150 days after tumor implantation, similar to the effects of 2A. Morphologic and immunohistochemical analyses showed massive central necrosis and infiltration of granzyme B^positive cells in necrotic areas and viable peripheral regions of treated tumors. Finally, cell depletion studies showed that CD137L-mediated tumor regression was CD8 + Tcell dependent. Conclusions: From these studies, it was determined that both targeted and untargeted CD137L fusion proteins showed effective antitumor activity, but that the targeted version was more potent. Therefore, the use of the natural CD137 ligand is a promising approach to the treatment of solid tumors by virtue of its ability to produce physiologic costimulation within the tumor, limiting side effects often seen with agonist antibody therapies.T-cell anergy is one of the major impediments to the ability of the immune system to eradicate established tumors (1 -4). To elicit an effective T-cell response, the engagement of the T-cell receptor by MHC-peptide complex needs to occur in the setting of a second signal provided by costimulation (5). The B7/CD28 interaction has been widely studied as the primary pathway for costimulatory activation of resting T cells (6, 7). Recently, however, signaling relayed through CD137 and other members of the CD28 and tumor necrosis factor receptor (TNFR) families have received broad attention as additional mechanisms for the induction of potent T-cell effector functions (8, 9). CD137 (4-1BB) and its natural ligand CD137L (4-1BBL) are members of the TNFR/TNF superfamily (10 -12). CD137 is transiently expressed primarily on activated T cells (13,14), whereas CD137L has been found on activated antigenpresenting cells (10, 15 -17). Although the engagement of CD137 by CD137L provides costimulation to both CD4 + and CD8 + T cells (18 -20), evidence indicates that costimulation has a more profound effect on CD8 + T cells (21). In experiments using a CD137 agonist antibody or cells constitutively expressing CD137L (18, 21 -31), CD137 engagement was shown to regulate T-cell number and functions, including the secre...
Whitewater Arroyo virus (WWAV) is a North American New World arenavirus, first isolated from rats in New Mexico in 1993, and tentatively associated with three human fatalities in California in 1999-2000. However, it remains unclear whether WWAV was the cause of these, or any other, human infections. One important characteristic of viruses that influences pathogenic potential is the choice of cellular receptor and the corresponding tropism of the virus. In the arenaviruses, these properties are determined largely by the viral glycoprotein (GP). We have previously noted for the New World clade B arenaviruses, which include four severe human pathogens, that the ability to cause human disease correlates with the ability of the GP to use the human transferrin receptor 1 (hTfR1) to enter cells. In addition, pseudotyped retroviral vectors displaying the GPs from pathogenic clade B viruses transduced a range of cell lines in vitro that was distinct from those that could be transduced by nonpathogenic clade B viruses. WWAV was initially classified as a New World clade A virus, based on sequence analysis of its nucleoprotein gene. However, more extensive analyses have revealed that WWAV and the other North American arenaviruses are probably recombinant clade A/B viruses, and that the WWAV GP is more closely related to the clade B GPs. Based on this finding, we sought to understand more about the possible pathogenic potential of WWAV by determining whether its clade B-like GP exhibited the characteristics of a pathogenic or non-pathogenic clade B virus. Our studies found that WWAV GP did not use hTfR1 for entry, and that its overall in vitro tropism was most similar to the GPs from the nonpathogenic clade B viruses. Although many viral factors in addition to GP receptor use and tropism determine whether a virus is able to cause disease in humans, our analysis of the WWAV GP does not support the idea that WWAV is a human pathogen.
Summary Zoonotic disease surveillance is typically triggered after animal pathogens have already infected humans. Are there ways to identify high-risk viruses before they emerge in humans? If so, then how and where can identifications be made and by what methods? These were the fundamental questions driving a workshop to examine the future of predictive surveillance for viruses that might jump from animals to infect humans. Virologists, ecologists and computational biologists from academia, federal government and non-governmental organizations discussed opportunities as well as obstacles to the prediction of species jumps using genetic and ecological data from viruses and their hosts, vectors and reservoirs. This workshop marked an important first step towards envisioning both scientific and organizational frameworks for this future capability. Canine parvoviruses as well as seasonal H3N2 and pandemic H1N1 influenza viruses are discussed as exemplars that suggest what to look for in anticipating species jumps. To answer the question of where to look, prospects for discovering emerging viruses among wildlife, bats, rodents, arthropod vectors and occupationally exposed humans are discussed. Finally, opportunities and obstacles are identified and accompanied by suggestions for how to look for species jumps. Taken together, these findings constitute the beginnings of a conceptual framework for achieving a virus surveillance capability that could predict future species jumps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.