[1] The first set of near-equatorial occultations of the Saturn ionosphere was obtained by the Cassini spacecraft between May and September of 2005. The occultations occurred at near-equatorial latitudes, between 10°N and 10°S, at solar zenith angles from about 84°to 96°. The entry observations correspond to dusk conditions and the exit ones to dawn. An initial look at the data indicates that the average peak densities are lower and the peak altitude higher at dawn than at dusk, possibly the result of ionospheric decay during the night hours. There are also significant differences between individual dawn and dusk occultations; the initial thought is that this variation must be connected to changes in the water inflow into the upper atmosphere and/or variations in the particle impact ionization rates.
The helium abundance in the Jovian atmosphere is derived from Voyager 1 data by two methods. The first method uses only infrared spectra from selected locations on the planet while the second method uses a thermal
Infrared spectra obtainedfrom Voyager 2 have provided additional data on the Jovian system, complementing those obtained from Voyager 1. The abundance ratio of ethane to acetylene in Jupiter's atmosphere appears to be about three times larger in the polar regions than at lower latitudes. A decidedly hemispherical asymmetry exists, with somewhat higher ratios prevailing in northern latitudes. An overall increase in the abundance ratio by a factor of about 1.7 appears to have occurred between the Voyager 1 and 2 encounters. Global brightness temperature maps of Jupiter at 226 and 602 cm(-1) exhibit a large amount of local- and planetary-scale structure, as well as temporal variability. Although heterogeneous cloud structure and ammonia concentration in the lower troposphere may contribute to the appearance of the 226-cm(-1) map, the detail in the 602-cm(-1) maps probably represents the actual horizontal thermal structure near the tropopause and suggests that dynamical heating and cooling processes are important. Low-latitude surface temperatures on the Galilean satellites rangefrom approximately 80 K on the dark sides to 155 K at the subsolar point on Callisto. Below a thin insulating layer, the thermal inertia of Callisto is somewhat greater than that of Earth's moon. Upper limits on the infrared optical depth of the Jovian ring rangingfrom approximately 3 x 10(-4) at 250 cm(-1) to 3 x 10(-3) at 600 cm(-1) have been found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.