Phosphatidylinositol mannosides (PIMs) are a major class of glycolipids in all mycobacteria. AcPIM2, a dimannosyl PIM, is both an end product and a precursor for polar PIMs, such as hexamannosyl PIM (AcPIM6) and the major cell wall lipoglycan, lipoarabinomannan (LAM). The mannosyltransferases that convert AcPIM2 to AcPIM6 or LAM are dependent on polyprenol-phosphate-mannose (PPM), but have not yet been characterized. Here, we identified a gene, termed pimE that is present in all mycobacteria, and is required for AcPIM6 biosynthesis. PimE was initially identified based on homology with eukaryotic PIG-M mannosyltransferases. PimE-deleted Mycobacterium smegmatis was defective in AcPIM6 synthesis, and accumulated the tetramannosyl PIM, AcPIM4. Loss of PimE had no affect on cell growth or viability, or the biosynthesis of other intracellular and cell wall glycans. However, changes in cell wall hydrophobicity and plasma membrane organization were detected, suggesting a role for AcPIM6 in the structural integrity of the cell wall and plasma membrane. These defects were corrected by ectopic expression of the pimE gene. Metabolic pulse-chase radiolabeling and cell-free PIM biosynthesis assays indicated that PimE catalyzes the ␣1,2-mannosyl transfer for the AcPIM5 synthesis. Mutation of an Asp residue in PimE that is conserved in and required for the activity of human PIG-M resulted in loss of PIM-biosynthetic activity, indicating that PimE is the catalytic component. Finally, PimE was localized to a distinct membrane fraction enriched in AcPIM4 -6 biosynthesis. Taken together, PimE represents the first PPM-dependent mannosyltransferase shown to be involved in PIM biosynthesis, where it mediates the fifth mannose transfer.
Leishmania are protozoan parasites that replicate within mature phagolysosomes of mammalian macrophages. To define the biochemical composition of the phagosome and carbon source requirements of intracellular stages of L. major, we investigated the role and requirement for the gluconeogenic enzyme fructose-1,6-bisphosphatase (FBP). L. major FBP was constitutively expressed in both extracellular and intracellular stages and was primarily targeted to glycosomes, modified peroxisomes that also contain glycolytic enzymes. A L. major FBP-null mutant was unable to grow in the absence of hexose, and suspension in glycerol-containing medium resulted in rapid depletion of internal carbohydrate reserves. L. major ⌬fbp promastigotes were internalized by macrophages and differentiated into amastigotes but were unable to replicate in the macrophage phagolysosome. Similarly, the mutant persisted in mice but failed to generate normal lesions. The data suggest that Leishmania amastigotes reside in a glucose-poor phagosome and depend heavily on nonglucose carbon sources. Feeding experiments with [ 13 C]fatty acids showed that fatty acids are poor gluconeogenic substrates, indicating that amino acids are the major carbon source in vivo. The need for amino acids may have forced Leishmania spp. to adapt to life in the mature phagolysosome.gluconeogenesis ͉ intracellular pathogens ͉ phagolysosome ͉ carbohydrate ͉ mannan L eishmania are parasitic protozoa that cause a spectrum of important diseases in Ͼ12 million people worldwide, ranging from self-healing cutaneous lesions to nonhealing mucocutaneous and visceral disease. There are no effective vaccines against leishmaniasis, and current drug treatments are characterized by low efficacy, high toxicity, and expense or, in the case of front-line antimonial drugs, widespread resistance (1). Infection of humans and other animal hosts is initiated by flagellated promastigotes that develop within the digestive tract of the sandfly vector and are injected into the skin during a sandfly blood meal. Promastigotes are internalized into mature phagolysosomes of a number of phagocytic host cells, including neutrophils, dendritic cells, and macrophages but proliferate only within the latter (2). The proliferative intracellular stages are aflagellate amastigotes that remain within the phagolysosome and perpetuate infection in the host through repeated cycles of macrophage infection.Very few other microbial pathogens are capable of proliferating within macrophage phagolysosomes (3), and little is known about the nutrient composition of this compartment or the metabolic responses of persistent Leishmania amastigote stages (4). Glucose uptake appears to be essential in promastigote infection of macrophages, because promastigotes of a Leishmania mexicana mutant lacking all glucose transporters are unable to infect macrophages (5). However, this mutant fails to differentiate into amastigotes in vitro (5), and the hexose requirements of this stage are largely unknown. Glucose and other hexoses are a pot...
The beta-amyloid protein (Abeta) is derived by proteolytic processing of the amyloid protein precursor (APP). Cleavage of APP by beta-secretase generates a C-terminal fragment (APP-CTFbeta), which is subsequently cleaved by gamma-secretase to produce Abeta. Our previous studies have shown that the proteasome can cleave the C-terminal cytoplasmic domain of APP. To identify proteasome cleavage sites in APP, two peptides homologous to the C-terminus of APP were incubated with recombinant 20S proteasome. Cleavage of the peptides was monitored by reversed phase high-performance liquid chromatography and mass spectrometry. Proteasome cleaved the APP C-terminal peptides at several sites, including a region around the sequence YENPTY that interacts with several APP-binding proteins. To examine the effect of this cleavage on Abeta production, APP-CTFbeta and mutant forms of APP-CTFbeta terminating on either side of the YENPTY sequence were expressed in CHO cells. Truncation of APP-CTFbeta on the N-terminal side of the YENPTY sequence at residue 677 significantly decreased the amount of Abeta produced, whereas truncation on the C-terminal side of residue 690 had little effect. The results suggest that proteasomal cleavage of the cytosolic domain of APP at the YENPTY sequence decreases gamma-secretase processing, and consequently inhibits Abeta production. Therefore, the proteasome-dependent trafficking pathway of APP may be a valid therapeutic target for altering Abeta production in the Alzheimer's disease brain.
Leishmania spp. are sandfly-transmitted protozoa parasites that cause a spectrum of diseases in humans. Many enzymes involved in Leishmania central carbon metabolism differ from their equivalents in the mammalian host and are potential drug targets. In this review we summarize recent advances in our understanding of Leishmania central carbon metabolism, focusing on pathways of carbon utilization that are required for growth and pathogenesis in the mammalian host. While Leishmania central carbon metabolism shares many features in common with other pathogenic trypanosomatids, significant differences are also apparent. Leishmania parasites are also unusual in constitutively expressing most core metabolic pathways throughout their life cycle, a feature that may allow these parasites to exploit a range of different carbon sources (primarily sugars and amino acids) rapidly in both the insect vector and vertebrate host. Indeed, recent gene deletion studies suggest that mammal-infective stages are dependent on multiple carbon sources in vivo. The application of metabolomic approaches, outlined here, are likely to be important in defining aspects of central carbon metabolism that are essential at different stages of mammalian host infection.
Genetic and experimental evidence points to amyloid-beta (Abeta) peptide as the culprit in Alzheimer's disease pathogenesis. This protein fragment abnormally accumulates in the brain cortex and hippocampus of patients with Alzheimer's disease, and self-aggregates to form toxic oligomers causing neurodegeneration.Abeta is heterogeneous and produced from a precursor protein (amyloid precursor protein [APP]) by two sequential proteolytic cleavages that involve beta- and gamma-secretases. This latter enzyme represents a potentially attractive drug target since it dictates the solubility of the generated Abeta fragment by creating peptides of various lengths, namely Abeta(40) and Abeta(42), the longest being the most aggregating. gamma-Secretase comprises a molecular complex of four integral membrane proteins - presenilin, nicastrin, APH-1 and PEN-2 - and its molecular mechanism remains under extensive scrutiny. The ratio of Abeta(42) over Abeta(40) is increased by familial Alzheimer's disease mutations occurring in the presenilin genes or in APP, near the gamma-secretase cleavage site. Potent gamma-secretase inhibitors have been identified by screening drug libraries or by designing aspartyl protease transition-state analogues based on the APP substrate cleavage site. Most of these compounds are not specific for gamma-secretase cleavage of APP, and equally inhibit the processing of other gamma-secretase substrates, such as Notch and a subset of cell-surface receptors and proteins involved in embryonic development, haematopoiesis, cell adhesion and cell/cell contacts. Therefore, current research aims at finding compounds that show selectivity for APP cleavage, and particularly that inhibit the formation of the aggregating form, Abeta(42). Compounds that target the substrate docking site rather than the enzyme active site are also being investigated as an alternative strategy. The finding that some NSAID analogues preferentially inhibit the formation of Abeta(42) over Abeta(40) and do not affect Notch processing has opened a new therapeutic window. The progress in design of selective inhibitors as well as recent results obtained in animal studies prove that gamma-secretase remains among the best targets for the therapeutic control of amyloid build-up in Alzheimer's disease. The full understanding of gamma-secretase regulation may yet uncover new therapeutic leads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.