The spectral broadening of characteristic γ-ray emission peaks from the reaction (12)C((3)He,pγ)(14)N was measured in D((3)He) plasmas of the JET tokamak with ion cyclotron resonance heating tuned to the fundamental harmonic of (3)He. Intensities and detailed spectral shapes of γ-ray emission peaks were successfully reproduced using a physics model combining the kinetics of the reacting ions with a detailed description of the nuclear reaction differential cross sections for populating the L1-L8 (14)N excitation levels yielding the observed γ-ray emission. The results provide a paradigm, which leverages knowledge from areas of physics outside traditional plasma physics, for the development of nuclear radiation based methods for understanding and controlling fusion burning plasmas.
This research concerns the development of a SF 6 RF discharge at low pressure in a small reactor for industrial applications. The plasma is produced in the pressure range 0.05-1 mbar by a RF supply. The pumping system sustains a flowrate of about 50 cm s −1 , with residence time in the discharge of about 0.2 s at a pressure of 0.1 mbar. The discharge parameters were measured at a low operation power. Measurements were performed by means of movable electrostatic probes and a photodiode. Particular care in the analysis of the data proved to be necessary due to the presence of a substantial amount of negative ions. The reactor has been employed for textile treatment in order to modify the surface properties of the fibres. Favourable operating conditions leading to an improved hydrophobicity of the textiles were achieved.
A view of the latest experimental results and progress in the understanding of the role of poloidal flows driven by fluctuations via Reynolds stress is given. Reynolds stress shows a radial gradient close to the velocity shear layer location in tokamaks and stellarators, indicating that this mechanism may drive significant poloidal flows in the plasma boundary. Observation of the generation of E × B sheared flows via Reynolds stress at the ion Bernstein resonance layer has been noticed in toroidal magnetized plasmas. The experimental evidence of sheared E × B flows linked to the location of rational surfaces in stellarator plasmas might be interpreted in terms of Reynolds stress sheared driven flows. These results show that E × B sheared flows driven by fluctuations can play an important role in the generation of transport barriers.
This paper concerns the study of the development of turbulence in a toroidal magnetoplasma [C. Riccardi et al., Plasma Phys. 36, 1791 (1994)]. This analysis has been performed by evaluating wave number, frequency spectra, and bicoherence coefficients of density fluctuations associated to drift wave propagation. Plasma parameters have been changed over a wide range, in order to identify and characterize density fluctuations both in absence and in presence of nonlinear phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.