The modal cutoff of square-lattice photonic crystal fibers with a finite number of air-hole rings has been accurately investigated to our knowledge for the first time. By analyzing the leaky behavior of the second-order mode, we have obtained a phase diagram that describes the regions of single-mode and multimode operation as well as the endlessly single-mode regime. Furthermore, starting from these results, we have obtained the cutoff normalized frequency according to two different formulations of the V parameter previously adopted for fibers with a triangular lattice. A final comparison of the cutoff properties of fibers characterized by a square lattice and a triangular lattice has been carried out.
A three-core polarization splitter based on a square-lattice photonic-crystal fiber is presented. The component separates the input field into two orthogonally polarized beams that are coupled to the horizontal and vertical output ports. The splitter has been designed through modal and beam propagation analysis by employing high-performance codes based on the finite-element method. Results obtained for a device length of 20 mm show extinction ratios as low as -23 dB with bandwidths as great as 90 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.