Germ-line chimaerism is a powerful technique that has proved to be useful to produce viable gametes when transplanted blastomeres colonize the germinal ridges in recipient embryos and obtaining offspring from such transplanted cells. In fish, ionizing radiations were commonly used for embryo penalization to cancelling the cell participation of recipient embryos in development and in gamete production. The ultraviolet (UV) radiation when compared with other radiation types is cheaper, easier and no special installations are required for its use. So, the aim of this work was to establish the optimal UV radiation dose to be applied in zebrafish embryos at mid-blastula transition stage of development, in order to use them as penalized recipient embryos in futures chimaerism assays. A UV germicide lamp was used as radiation source (0.529 mW/cm(2)). Four exposure levels and three exposure times of UV radiation were tested. The survival rates obtained with the non-dechorionated embryos without lid group suggested that it could be the optimal exposure level to achieve the objective proposed. With the obtained results, we concluded that this UV radiation dose for 60 and 30 s are optimal parameters to penalize recipient wild and gold strain zebrafish embryos, respectively in chimaerism assays, but without involving their survival and apparently normal development.
The effects of a predefined ultraviolet radiation dose (0.529 mW/cm2 for 30s) together with two different micromanipulation medium osmolarities (30 mOsm/kg vs 300 mOsm/kg) were tested on embryo survival at different developmental stages and on the somatic (skin) and germ-line chimaerism rates. Somatic (13%, 6/47 adults) and germ-line chimaerism (50% pigmented F1 larvae) were detected only in the UV-treated recipient embryos micromanipulated in a 300 mOsm/kg medium. From the results obtained, we concluded that the conditions cited above were the most suitable to improve somatic and germ-line chimaerism rates in zebrafish.
Zebrafish somatic nuclear transplant has only been attempted using preactivated eggs. In this work, three methods to carry out the nuclear transplant using adult cells before, during and after the egg activation/fertilization were developed in zebrafish with the aim to be used in reprogramming studies. The donor nucleus from somatic adult cells was inserted: (method A) in the central region of the egg and subsequently fertilized; (method B) in the incipient animal pole at the same time that the egg was fertilized; and (method C) in the completely defined animal pole after fertilization. Larval and adult specimens were obtained using the three methods. Technical aspects related to temperature conditions, media required, egg activation/fertilization, post-ovulatory time of the transplant, egg aging, place of the donor nucleus injection in each methodology are presented. In conclusion, the technical approach developed in this work can be used in reprogramming studies.
In zebrafish chimaerism experiments, the cell injection can involve intra-embryonic cell lyses by osmolar effects. Moreover, the donor cells can be injured during manipulation due to osmolar changes into the transplant pipette. Therefore, the present study aimed to assess the effects of manipulation medium osmolarity on embryonic survival and donor cell viability.In Experiment I, 0.1 microl to 0.15 microl approximately of an isosmolar solution (300 mOsm) was injected into recipient embryos, which were kept at 300 (E1) or 30 mOsm (E2). Survival at day 1 was significantly higher in the E2 group than in E1 (E1: 68% vs E2: 81%, p < 0.05), but after 5 days embryo survival in the E1 group was slightly higher. In Experiment II, donor cells from zebrafish embryos were exposed (or not) to a possible osmolarity change (inner pipette medium: 300 mOsm vs external medium: 30 or 300 mOsm) using two different micropipette outer diameters, 40-50 and 60-70 microm. Cell mechanical damage was detected in the 40-50 microm pipette (p < 0.05), but not by the handling medium osmolarity. Results recommend the use of a 300 mOsm manipulation medium and bore-sized pipettes adjusted as closely as possible to the donor cell size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.