The photoresponse of the semimagic N=82 nucleus (136)Xe was measured up to the neutron separation energy S(n) using the (gamma, gamma') reaction. A concentration of strong dipole excitations is observed well below S(n) showing a fragmented resonancelike structure. Microscopic calculations in the quasiparticle phonon model including complex configurations of up to three phonons agree well with the experimental data in the total integrated strength, in the shape and the fragmentation of the resonance, which allows us to draw conclusions on the damping mechanism of the pygmy dipole resonance.
The low-lying electric dipole (E1) strength in the semi-magic nucleus 136 Xe has been measured which finalizes the systematic survey to investigate the so-called pygmy dipole resonance (PDR) in all stable even N=82 isotones with the method of nuclear resonance fluorescence using real photons in the entrance channel. In all cases, a fragmented resonance-like structure of E1 strength is observed in the energy region 5 MeV to 8 MeV. An analysis of the fragmentation of the strength reveals that the degree of fragmentation decreases towards the proton-deficient isotones while the total integrated strength increases indicating a dependence of the total strength on the neutron-to-proton ratio. The experimental results are compared to microscopic calculations within the quasi-particle phonon model (QPM). The calculation includes complex configurations of up to three phonons and is able to reproduce also the fragmentation of the E1 strength which allows to draw conclusions on the damping of the PDR. Calculations and experimental data are in good agreement in the degree of fragmentation and also in the integrated strength if the sensitivity limit of the experiments is taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.