The MOSCAB experiment (Materia OSCura A Bolle) uses the "geyser technique", a variant of the superheated liquid technique of extreme simplicity. Operating principles of the new dark matter detector and technical solutions of the device are reported in detail. First results obtained in a series of test runs taken in laboratory demonstrate that we have successfully built and tested a geyser-concept bubble chamber that can be used in particle physics, especially in dark matter searches, and that we are ready to move underground for extensive data taking.
Purpose
The AstroBio Cube Satellite (ABCS) will deploy within the inner Van Allen belt on the Vega C Maiden Flight launch opportunity of the European Space Agency. At this altitude, ABCS will experience radiation doses orders of magnitude greater than in low earth orbit, where CubeSats usually operate. The paper aims to estimate the irradiation effect on the ABCS payload in the orbital condition, their possible mitigation designing shielding solutions and performs a preliminary representativity simulation study on the ABCS irradiation with fission neutron at the TAPIRO (TAratura Pila Rapida Potenza 0) nuclear research reactor facility at ENEA.
Methods
We quantify the contributions of geomagnetically trapped particles (electron and proton), Galactic Cosmic Rays (GCR ions), Solar energetic particle within the ABCS orbit using the ESA’s SPace ENVironment information system. FLUKA (Fluktuierende Kaskade—Fluctuating Cascade) code models the ABCS interaction with the orbital source.
Results
We found a shielding solution of the weight of 300 g constituted by subsequent layers of tungsten, resins, and aluminium that decreases on average the 20% overall dose rate relative to the shielding offered by the only satellite’s structure. Finally, simulations of neutron irradiation of the whole ABCS structure within the TAPIRO’s thermal column cavity show that a relatively short irradiation time is requested to reach the same level of 1 MeV neutron Silicon equivalent damage of the orbital source.
Conclusions
The finding deserves the planning of a future experimental approach to confirm the TAPIRO’s performance and establish an irradiation protocol for testing aerospatial electronic components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.