ABSTRACT:The legacy inherited from anthropogenic processes needs to be addressed in order to provide reliable and up-to-date ground information relevant to the urban environment. The legacy includes holes as well as materials. Their characteristics derive from former quarrying and mining activities, industrial processes creating derelict ground, variably consolidated made ground, and contaminated groundwater and soils. All need to be systematically assessed to inform the planning process and provide the basis for engineering solutions. Site-specific investigation needs to be conducted on the back of good quality geoscientific data. This comes from 'field' survey, remotely sensed data interpretation, soil geochemical sampling, and geotechnical investigation. Three-dimensional characterization of superficial deposits is required to reach an understanding of the potential spatial lithological variability of artificial ground and the geometry of importance surfaces, i.e. the boundary conditions.
In recent years, engineering geology has been trying to redefine itself in terms of a set of 'core values' or 'special scientific principles. ' John Knill (2003) illustrated the essence of engineering geology in the engineering geological triangle. One way of trying to understand the relationships between some of the 'core values' is through the engineering geological ground model, which seeks to combine understanding of the spatial distribution of engineering boundaries with knowledge of rock and soil material, and mass, properties and the geological processes that alter these through time. The rapid development in information technology over the last twenty years and the digitisation of increasing amounts of geological data has brought engineering geology to a situation in which the production of meaningful 3D spatial models of the shallow subsurface is feasible. The paper describes how this can be done and points the way to the next stage that involves the attribution of these spatial models with physical, mechanical and chemical property data. Some new developments in the provision of geohazard susceptibility information at the national scale are also discussed. A future is proposed in which site investigation sets out to test a preexisting spatial model based on real data, rather than trying to create such a model based on concepts alone.
Landslide inventories are essential because they provide the basis for predictive landslide hazard and susceptibility assessments and because they allow for the manipulation and storage of temporal and spatial data. The National Landslide Database has been developed by the British Geological Survey (BGS). It is the most extensive source of information on landslides in Great Britain with over 15 000 records of landslide events each documented as fully as possible. This information is invaluable for planners and developers as it helps them investigate, avoid or mitigate areas of unstable ground in accordance with Government planning policy guidelines. Therefore, it is vital that the continual verification, collection and updating of landslide information is carried out as part of the Survey's 'National Capability' work. This paper describes the evolution from a static database to one that is continually updated forming part of a suite of national digital hazard products. The history of the National Landslide Database and associated Geographical Information System (GIS) is discussed, together with its application and future development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.