Congenital cutis laxa, a rare syndrome with marked skin laxity and pulmonary and cardiovascular compromise, is due to defective elastic fiber formation. In several cases, skin fibroblast tropoelastin production is markedly reduced yet reversed in vitro by transforming growth factor- treatment. We previously showed that this reversal was due to elastin mRNA stabilization in one cell strain, and here this behavior was confirmed in skin fibroblasts from two generations of a second family. cDNA sequencing and heteroduplex analysis of elastin gene transcripts from three fibroblast strains in two kindreds now identify two frameshift mutations (2012⌬G and 2039⌬C) in elastin gene exon 30, thus leading to missense C termini. No other mutations were present in the ELN cDNA sequences of all three affected individuals. Transcripts from both alleles in each kindred were unstable and responsive to transforming growth factor-. Exons 22, 23, 26A, and 32 were always absent. Since exon 30 underwent alternative splicing in fibroblasts, we speculate that a differential splicing pattern could conceivably lead to phenotypic rescue. These two dominant-acting, apparently de novo mutations in the elastin gene appear to be responsible for qualitative and quantitative defects in elastin, resulting in the cutis laxa phenotype.
Ascorbate contributes to several metabolic processes including efficient hydroxylation of hydroxyproline in elastin, collagen, and proteins with collagenous domains, yet hydroxyproline in elastin has no known function. Prolyl hydroxylation is essential for efficient collagen production; in contrast, ascorbate has been shown to decrease elastin accumulation in vitro and to alter morphology of elastic tissues in vivo. Ascorbate doses that maximally stimulated collagen production (10-200 microM) antagonized elastin biosynthesis in vascular smooth muscle cells and skin fibroblasts, depending on a combination of dose and exposure time. Diminished elastin production paralleled reduced elastin mRNA levels, while collagen I and III mRNAs levels increased. We compared the stability of mRNAs for elastin and collagen I with a constitutive gene after ascorbate supplementation or withdrawal. Ascorbate decreased elastin mRNA stability, while collagen I mRNA was stabilized to a much greater extent. Ascorbate withdrawal decreased collagen I mRNA stability markedly (4.9-fold), while elastin mRNA became more stable. Transcription of elastin was reduced 72% by ascorbate exposure. Differential effects of ascorbic acid on collagen I and elastin mRNA abundance result from the combined, marked stabilization of collagen mRNA, the lesser stability of elastin mRNA, and the significant repression of elastin gene transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.