Background: Thyroidectomy is one of the most commonly performed surgical procedures. The region of the neck has a very complex structural organization. It would be beneficial to introduce a tool that can assist the surgeon in tissue discrimination during the procedure. One such solution is the noninvasive and contactless technique, called hyperspectral imaging (HSI). Methods: To interpret the HSI data, we implemented a supervised classification method to automatically discriminate the parathyroid, the thyroid, and the recurrent laryngeal nerve from surrounding tissue(muscle, skin) and materials (instruments, gauze). A leave-one-patient-out cross-validation was performed. Results: The best performance was obtained using support vector machine (SVM) with a classification and visualization in less than 1.4 seconds. A mean patient accuracy of 68% ± 23% was obtained for all tissues and material types. Conclusions: The proposed method showed promising results and have to be confirmed on a larger cohort of patient data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.