Abstract. RPAs (Remotely Piloted Aircrafts) have been used in many Remote Sensing applications, featuring high-quality imaging sensors. In some situations, the images are interpreted in an automated fashion using object-oriented classification. In this case, the first step is segmentation. However, the setting of segmentation parameters such as scale, shape, and compactness may yield too many different segmentations, thus it is necessary to understand the influence of those parameters on the final output. This paper compares 24 segmentation parameter sets by taking into account classification scores. The results indicate that the segmentation parameters exert influence on both classification accuracy and processing time.
Abstract. Given the wide variety of image classifiers available nowadays, some questions remain about the accuracy and processing time of Very High Resolution (VHR) images. Another question concerns the use of a Single or Ensemble Classifiers. Of course, the main factor to consider is the quality of the classified image, but computational cost is also important, especially in applications that require real-time processing. Given this scenario, this paper aims to relate the accuracy of seven single classifiers and the ensemble of the same classifiers with the processing time. In this paper the ensemble of classifiers had the best results in terms of accuracy, however, it comes to processing time, the decision tree had the best performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.