A new generation of refractory material systems with significant increases in temperature capability is required to meet the demands of future aerospace applications. Such materials require a balance of properties such as low-temperature damage tolerance, high-temperature strength, creep resistance, and superior environmental stability for implementation in advanced aerospace systems. Systems incorporating niobium-based beta alloys and intermetallic compounds have the potential for meeting these requirements.
This article reviews the most recent progress in the development of Nb-silicide-based in situ composites for potential applications in turbine engines with service temperatures of up to 1350°C. These composites contain high-strength Nb silicides that are toughened by a ductile Nb solid solution. Preliminary composites were derived from binary Nb-Si alloys, while more recent systems are complex and are alloyed with Ti, Hf, W, B, Ge, Cr, and Al. Alloying schemes have been developed to achieve an excellent balance of room-temperature toughness, fatigue-crack-growth behavior, high-temperature creep performance, and oxidation resistance over a broad range of temperatures. Nb-silicide-based composites are described with emphasis on processing, microstructure, and performance. Nb silicide composites have been produced using a range of processing routes, including induction skull melting, investment casting, hot extrusion, and powder metallurgy methods. Nb silicide composite properties are also compared with those of Ni-based superalloys.
Композиционные материалы (КМ) на основе ниобия c функциональными и легирующими добавками (Si, Hf, Ti, Al и др.) имеют перспективу промышленного освоения в авиационном двигателестроении. Ранее авторами было показано, что такие КМ можно синтезировать в автоволновом режиме (режиме горения), используя высокоэкзотермические смеси Nb 2 O 5 с Al, Si, Hf и Ti. Было обнаружено, что в волне горения гафний активно участвует в восстановлении Nb 2 O 5 , что усложняет его введение в КМ. Настоящая работа направлена на изучение возможности синтеза методами центробежной СВС-металлургии композиционных материалов на основе Nb с высоким содержанием Hf. В экспериментальных исследованиях, проведенных на центробежной установке под воздействием перегрузки 40 g, было показано, что замена активного Hf на менее активные его соединения Hf-Al или Hf-Ti-Si-Al в составе смесей Nb 2 O 5 /Al позволяет перевести горение смеси из взрывоподобного режима в режим стационарного горения. С увеличением размера гранул Hf-Al от 0-40 до 160-300 мкм в смеси содержание Hf в КМ возрастает от 1,3 до 3,8 мас.%. Введение в исходную шихту гранул Hf-Ti-Si-Al с размером частиц от 1 до 3 позволяет получать литые КМ на основе силицидов ниобия с содержанием Hf до 8,1 мас.%. Методами электронной микроскопии и рентгенофазового анализа определены интегральный состав и распределение базовых и примесных элементов в структурных составляющих литых КМ, а также их фазовый состав. Композиционные материалы с максимальным содержанием Hf (8,1 мас.%) содержат 3 структурных составляющих: (1)-основу, которая включает Nb, Si, Ti; (2)-межзеренные границы, содержащие Nb, Ti и Al; (3)-включения на основе оксида гафния. На рентгенограмме КМ выявлены 3 фазы: твердые растворы на основе Nb и Nb 5 Si 3 , а также небольшое количество Nb 3 Si.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.