Abstract. The Bowen ratio surface energy balance method is a relatively simple method to determine the latent heat flux and the actual land surface evaporation. The Bowen ratio method is based on the measurement of air temperature and vapour pressure gradients. If these measurements are performed at only two heights, correctness of data becomes critical. In this paper we present the concept of a new measurement method to estimate the Bowen ratio based on vertical dry and wet bulb temperature profiles with high spatial resolution. A short field experiment with distributed temperature sensing (DTS) in a fibre optic cable with 13 measurement points in the vertical was undertaken. A dry and a wetted section of a fibre optic cable were suspended on a 6 m high tower installed over a sugar beet trial plot near Pietermaritzburg (South Africa). Using the DTS cable as a psychrometer, a near continuous observation of vapour pressure and air temperature at 0.20 m intervals was established. These data allowed the computation of the Bowen ratio with a high spatial and temporal precision. The daytime latent and sensible heat fluxes were estimated by combining the Bowen ratio values from the DTS-based system with independent measurements of net radiation and soil heat flux. The sensible heat flux, which is the relevant term to evaluate, derived from the DTS-based Bowen ratio (BR-DTS) was compared with that derived from co-located eddy covariance (R 2 = 0.91), surface layer scintillometer (R 2 = 0.81) and surface renewal (R 2 = 0.86) systems. By using multiple measurement points instead of two, more confidence in the derived Bowen ratio values is obtained.
Abstract. The surface renewal (SR) method was used to determine the long-term (12 months) total evaporation (ET) from the Mfabeni Mire with calibration using eddy covariance during two window periods of approximately one week each. The SR method was found to be inexpensive, reliable and with low power requirements for unattended operation.Despite maximum ET rates of up to 6.0 mm day −1 , the average summer (October to March) ET was lower (3.2 mm day −1 ) due to early morning cloud cover that persisted until nearly midday at times. This reduced the daily available energy, and the ET was lower than expected despite the available water and high average wind speeds. In winter (May to September), there was less cloud cover but the average ET was only 1.8 mm day −1 due to plant senescence. In general ET was suppressed by the inflow of humid air (low vapour pressure deficit) and the comparatively low leaf area index of the wetland vegetation. The accumulated ET over 12 months was 900 mm. Daily ET estimates were compared to the Priestley-Taylor model results and a calibration α = 1.0 (R 2 = 0.96) was obtained for the site. A monthly crop factor (K c ) was determined for the standardised FAO-56 Penman-Monteith. However, K c was variable in some months and should be used with caution for daily ET modelling.These results represent not only some of the first longterm measurements of ET from a wetland in southern Africa, but also one of the few studies of actual ET in a subtropical peatland in the Southern Hemisphere. The study provides wetland ecologists and hydrologists with guidelines for the use of two internationally applied models for the estimation of wetland ET within a coastal, subtropical environment and shows that wetlands are not necessarily high water users.
Notwithstanding the dispersed nature of the water, energy and food (WEF) nexus scholarship in the African continent, its strategic importance to the African agenda has gained widespread attention in research and planning circles. In this regard, the bibliometric science mapping and content analysis of the WEF nexus scientific publication trends, the conceptual, intellectual and social structures, as well as the inherent paradigmatic shifts in the WEF nexus body of knowledge in the African continent have been undertaken, using the nexus body of literature accessed from the Web of Science and Scopus core collection databases. The review results confirmed that, whilst the WEF nexus scholarship has expanded since 2013, there is also evidence of growth in the conceptual, intellectual and social structures of the WEF nexus in the African continent. These shifts have resulted in the emergence of hot topics (subfields) including modelling and optimization, climate variability and change, environmental ecosystem services sustainability, and sustainable development and livelihoods. The review further determined that these structures have evolved along two main perspectives of WEF nexus research development, i.e., the interdisciplinary and transdisciplinary domains. In support of the interpretation of the visual analytics of the intellectual structure and changing patterns of the WEF nexus research, the shifts in positivist, interpretivist and pragmatic paradigmatic perspectives (these are underpinned by the ontology, epistemology, and methodology and methods) are considered when explaining WEF nexus research shifts: (a) From the unconnected silo paradigms that focus on water, energy and food (security concerns) to interconnected (and sometimes interdependent or nested) linkages or systems incorporating environmental, social-economic and political drivers (also viewed as subfields) in a bid to holistically support the Sustainable Development Goals (SDGs) across the African continent; and (b) in the evaluation of the WEF nexus scholarship based on novel analytical approaches. We contend that whilst the theories of science change underpin this apparent expansion, the macro-economic theory will find use in explaining how the WEF nexus research agenda is negotiated and the Integrative Environmental Governance (IEG) is the duly suited governance theory to bridge the inherent disconnect between WEF nexus output and governance processes uncovered in the literature. Overall, operational challenges and opportunities of the WEF nexus abound, transitioning the WEF nexus research to practice in Africa, motivating the need to take advantage of the scholar–practitioner research underpinnings, as contemplated in the transdisciplinary research approach, which is characterised by the dual quest for new knowledge and considerations of use. Yet, there is need for more coordinated and collaborative research to achieve impact and transition from WEF nexus thinking to WEF nexus practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.