The here presented flying system uses two pairs of wide-angle stereo cameras and maps a large area of interest in a short amount of time. We present a multicopter system equipped with two pairs of wide-angle stereo cameras and an inertial measurement unit (IMU) for robust visual-inertial navigation and time-efficient omni-directional 3D mapping. The four cameras cover a 240 degree stereo field of view (FOV) vertically, which makes the system also suitable for cramped and confined environments like caves. In our approach, we synthesize eight virtual pinhole cameras from four wide-angle cameras. Each of the resulting four synthesized pinhole stereo systems provides input to an independent visual odometry (VO). Subsequently, the four individual motion estimates are fused with data from an IMU, based on their consistency with the state estimation. We describe the configuration and image processing of the vision system as well as the sensor fusion and mapping pipeline on board the MAV. We demonstrate the robustness of our multi-VO approach for visual-inertial navigation and present results of a 3D-mapping experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.