Young massive stars regulate the physical conditions, ionization, and fate of their natal molecular cloud and surroundings. It is important to find tracers that help quantifying the stellar feedback processes that take place at different spatial scales. We present ~85 arcmin2 (~1.3 pc2) velocity-resolved maps of several submillimeter molecular lines, taken with Herschel/HIFI, toward the closest high-mass star-forming region, the Orion molecular cloud 1 core (OMC-1). The observed rotational lines include probes of warm and dense molecular gas that are difficult, if not impossible, to detect from ground-based telescopes: CH+ (J = 1–0), CO (J = 10–9), HCO+ (J = 6–5) and HCN (J = 6–5), and CH (N, J =1, 3/2–1, 1/2). These lines trace an extended but thin layer (AV ≃3–6 mag or ~1016 cm) of molecular gas at high thermal pressure, Pth = nH · Tk ≈ 107 – 109 cm−3 K, associated with the far ultraviolet (FUV) irradiated surface of OMC-1. The intense FUV radiation field, emerging from massive stars in the Trapezium cluster, heats, compresses and photoevaporates the cloud edge. It also triggers the formation of specific reactive molecules such as CH+. We find that the CH+ (J = 1–0) emission spatially correlates with the flux of FUV photons impinging the cloud: G0 from ~103 to ~105. This correlation is supported by constant-pressure photodissociation region (PDR) models in the parameter space Pth/G0 ≈ [5 · 103 – 8 · 104] cm−3 K where many observed PDRs seem to lie. The CH+ (J = 1–0) emission spatially correlates with the extended infrared emission from vibrationally excited H2 (v ≥ 1), and with that of [C ii] 158 μm and CO J = 10–9, all emerging from FUV-irradiated gas. These correlations link the presence of CH+ to the availability of C+ ions and of FUV-pumped H2 (v ≥ 1) molecules. We conclude that the parsec-scale CH+ emission and narrow-line (Δv ≃ 3 km s−1) mid-J CO emission arises from extended PDR gas and not from fast shocks. PDR line tracers are the smoking gun of the stellar feedback from young massive stars. The PDR cloud surface component in OMC-1, with a mass density of 120–240 M⊙ pc−2, represents ~5% to ~10% of the total gas mass, however, it dominates the emitted line luminosity; the average CO J = 10–9 surface luminosity in the mapped region being ~35 times brighter than that of CO J = 2–1. These results provide insights into the source of submillimeter CH+ and mid-J CO emission from distant star-forming galaxies.
We present 1″-resolution ALMA observations of the circumnuclear disk (CND) and the interstellar environment around Sgr A*. The images unveil the presence of small spatial scale 12CO (J=3-2) molecular “cloudlets” (≲20,000 AU size) within the central parsec of the Milky Way, in other words, inside the cavity of the CND, and moving at high speeds, up to 300 km s−1 along the line-of-sight. The 12CO-emitting structures show intricate morphologies: extended and filamentary at high negative-velocities (vLSR ≲−150 km s−1), more localized and clumpy at extreme positive-velocities (vLSR ≳+200 km s−1). Based on the pencil-beam 12CO absorption spectrum toward Sgr A* synchrotron emission, we also present evidence for a diffuse molecular gas component producing absorption features at more extreme negative-velocities (vLSR <−200 km s−1). The CND shows a clumpy spatial distribution traced by the optically thin H13CN (J=4-3) emission. Its motion requires a bundle of non-uniformly rotating streams of slightly different inclinations. The inferred gas density peaks, molecular cores of a few 105 cm−3, are lower than the local Roche limit. This supports that CND cores are transient. We apply the two standard orbit models, spirals vs. ellipses, invoked to explain the kinematics of the ionized gas streamers around Sgr A*. The location and velocities of the 12CO cloudlets inside the cavity are inconsistent with the spiral model, and only two of them are consistent with the Keplerian ellipse model. Most cloudlets, however, show similar velocities that are incompatible with the motions of the ionized streamers or with gas bounded to the central gravity. We speculate that they are leftovers of more massive molecular clouds that fall into the cavity and are tidally disrupted, or that they originate from instabilities in the inner rim of the CND that lead to fragmentation and infall from there. In either case, we show that molecular cloudlets, all together with a mass of several 10 M⊙, exist around Sgr A*. Most of them must be short-lived, ≲104 yr: photoevaporated by the intense stellar radiation field, G0≃105.3 to 104.3, blown away by winds from massive stars in the central cluster, or disrupted by strong gravitational shears.
The properties of molecular gas, the fuel that forms stars, inside the cavity of the circumnuclear disk (CND) are not well constrained. We present results of a velocity-resolved submillimeter scan (~480 to 1250 GHz) and [C ii] 158 μm line observations carried out with Herschel/HIFI toward Sgr A*; these results are complemented by a ~2′×2′ 12CO (J=3-2) map taken with the IRAM 30 m telescope at ~7″ resolution. We report the presence of high positive-velocity emission (up to about +300 km s−1) detected in the wings of 12CO J=5-4 to 10-9 lines. This wing component is also seen in H2O (11,0-10,1), a tracer of hot molecular gas; in [C ii]158 μm, an unambiguous tracer of UV radiation; but not in [C i] 492, 806 GHz. This first measurement of the high-velocity 12CO rotational ladder toward Sgr A* adds more evidence that hot molecular gas exists inside the cavity of the CND, relatively close to the supermassive black hole (< 1 pc). Observed by ALMA, this velocity range appears as a collection of 12CO (J=3-2) cloudlets lying in a very harsh environment that is pervaded by intense UV radiation fields, shocks, and affected by strong gravitational shears. We constrain the physical conditions of the high positive-velocity CO gas component by comparing with non-LTE excitation and radiative transfer models. We infer Tk≃400 K to 2000 K for nH≃(0.2-1.0)·105 cm−3. These results point toward the important role of stellar UV radiation, but we show that radiative heating alone cannot explain the excitation of this ~10-60 M⊙ component of hot molecular gas inside the central cavity. Instead, strongly irradiated shocks are promising candidates.
Context. Star-forming galaxies emit bright molecular and atomic lines in the submillimeter and far-infrared (FIR) domains. However, it is not always clear which gas heating mechanisms dominate and which feedback processes drive their excitation. Aims. The Sgr B2 complex is an excellent template to spatially resolve the main OB-type star-forming cores from the extended cloud environment and to study the properties of the warm molecular gas in conditions likely prevailing in distant extragalactic nuclei. Methods. We present 168 arcmin2 spectral images of Sgr B2 taken with Herschel/SPIRE-FTS in the complete ~450−1545 GHz band. We detect ubiquitous emission from mid-J CO (up to J = 12−11), H2O 21,1−20,2, [C I] 492, 809 GHz, and [N II] 205 μm lines. We also present velocity-resolved maps of the SiO (2−1), N2H+, HCN, and HCO+ (1−0) emission obtained with the IRAM 30 m telescope. Results. The cloud environment (~1000 pc2 around the main cores) dominates the emitted FIR (~80%), H2O 752 GHz (~60%) mid-J CO (~91%), [C I] (~93%), and [N II] 205 μm (~95%) luminosity. The region shows very extended [N II] 205 μm emission (spatially correlated with the 24 and 70 μm dust emission) that traces an extended component of diffuse ionized gas of low ionization parameter (U ≃ 10−3) and low LFIR / MH2 ≃ 4−11 L⊙M⊙−1 ratios (scaling as ∝Tdust6). The observed FIR luminosities imply a flux of nonionizing photons equivalent to G0 ≈ 103. All these diagnostics suggest that the complex is clumpy and this allows UV photons from young massive stars to escape from their natal molecular cores. The extended [C I] emission arises from a pervasive component of neutral gas with nH ≃ 103 cm−3. The high ionization rates in the region, produced by enhanced cosmic-ray (CR) fluxes, drive the gas heating in this component to Tk ≃ 40−60 K. The mid-J CO emission arises from a similarly extended but more pressurized gas component (Pth / k ≃ 107 K cm−3): spatially unresolved clumps, thin sheets, or filaments of UV-illuminated compressed gas (nH ≃ 106 cm−3). Specific regions of enhanced SiO emission and high CO-to-FIR intensity ratios (ICO / IFIR ≳ 10−3) show mid-J CO emission compatible with C-type shock models. A major difference compared to more quiescent star-forming clouds in the disk of our Galaxy is the extended nature of the SiO and N2H+ emission in Sgr B2. This can be explained by the presence of cloud-scale shocks, induced by cloud-cloud collisions and stellar feedback, and the much higher CR ionization rate (>10−15 s−1) leading to overabundant H3+ and N2H+. Conclusions. Sgr B2 hosts a more extreme environment than star-forming regions in the disk of the Galaxy. As a usual template for extragalactic comparisons, Sgr B2 shows more similarities to nearby ultra luminous infrared galaxies such as Arp 220, including a “deficit” in the [C I] / FIR and [N II] / FIR intensity ratios, than to pure starburst galaxies such as M 82. However, it is the extended cloud environment, rather than the cores, that serves as a useful template when telescopes do not resolve such extended regions in galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.