The purpose of this study was to assess the effect of humidity and packaging materials on the stability of iodine in typical salt samples from countries with tropical and subtropical climates, under controlled climatic conditions. Initially we examined eight samples. In the second phase we expanded the study to salts from 18 sources and attempted to correlate the observed stability with salt impurities naturally present in these samples. High humidity resulted in rapid loss of iodine from salt iodized with potassium iodate, ranging from 30% to 98% of the original iodine content. Solid low-density polyethylene packaging protected the iodine to a great extent. High losses were observed from woven high-density polyethylene bags, which are often the packaging material of choice in tropical countries. Impurities that provided moisture at the salt surface had the most deleterious effect. Although clear correlations were not obtained, the presence of reducing agents, hygroscopic compounds of magnesium, and so forth seemed to have the most adverse effects on the stability of iodine. Surprisingly, carbonates had little effect on stability over the range present in the samples. Packaging salt in low-density polyethylene bags, which provided a good moisture barrier, significantly reduced iodine losses, and in most cases the iodine content remained relatively stable for six months to a year. The findings from this study indicate that iodine can be highly unstable, and in order to ensure the effectiveness of local salt-iodization programmes, countries should determine iodine losses from local iodized salt under local conditions of production, climate, packaging, and storage.
Deficiencies in small quantities of micronutrients, especially iodine and iron, severely affect more than a third of the world's population, resulting in serious public health consequences, especially for women and young children. Salt is an ideal carrier of micronutrients. The double fortification of salt with both iodine and iron is an attractive approach to the reduction of both anemia and iodine-deficiency disorders. Because iodine is unstable under the storage conditions found during the manufacturing, distribution, and sale of salt in most developing countries, the effects of packaging materials and environmental conditions on the stability of salt double-fortified with iron and iodine were investigated. Salt was double-fortified with potassium iodide or potassium iodate and with ferrous sulfate or ferrous fumarate. The effects of stabilizers on the stability of iodine and iron were followed by storing the salt under three conditions that represent the extremes of normal distribution and sale for salt in developing countries: room temperature (25 degrees C) with 50%-70% relative humidity, 40 degrees C with 60% relative humidity, and 40 degrees C with 100% relative humidity. The effects of stabilizers, such as sodium hexametaphosphate (SHMP), calcium carbonate, calcium silicate, and dextrose were investigated. None of the combinations of iron and iodine compounds was stable at elevated temperatures. Essentially all of the iodine was lost over a period of six months. SHMP effectively slowed down the iodine loss, whereas magnesium chloride, a typical hygroscopic impurity, greatly accelerated this process. Calcium carbonate did not have a sparing effect on iodine, despite contrary indications in the literature. Ferrous sulfate-fortified salts generally turned yellow and developed an unpleasant rusty flavor. Salt fortified with ferrous fumarate and potassium, iodide was reasonably stable and maintained its organoleptic properties, making it more likely to be acceptable to consumers. We confirmed that application of the iodine compounds as solutions resulted in a more even distribution of the iodine throughout the sample. The effect of the packaging materials was overshadowed by the other variables. None of the packaging materials was clearly better than any other. This may have been due to the fact that the polymer bags were not heat sealed, and thus some moisture penetration was possible. The results indicate that with careful control of processing, packaging, and storage conditions, a double-fortified salt could be stabilized for the six-month period required for distribution and consumption. Unfortunately, the processing and storage required are difficult to attain under typical conditions in developing countries.
Micronutrient deficiencies (including iodine and iron deficiency) is a global health problem affecting one third of the world's population. Salt is an ideal carrier for food fortification as it is universally consumed at equal rates, independently of economic status, and it is industrially processed. Addressing iron and iodine deficiencies together is a challenge, due to interaction between iodine and iron, negating the effect of added iodine. This paper explains the development of an improved microencapsulation‐based technology to produce iron premix, which, when added to iodized salt, is stable and organoleptically indistinguishable. Ferrous fumarate was extruded, followed by cutting, sieving to achieve a size of 300–710 μm (salt grain size). Agglomerated extrudates were microencapsulated (5% hydroxypropyl methylcellulose and 5% soy stearin) to form iron premix. Microencapsulation ensures that the added micronutrients are stable without interaction or degradation. Double Fortified Salt is formed by blending iron premix with iodized salt (1:200 ratio). This technology was transferred to India for industrial scale‐up. The public distribution system was utilized to establish and monitor an efficient distribution network for DFS in a transparent manner. The scale‐up process was initially demonstrated in the state of Uttar Pradesh, following its success two more Indian states have started distribution of DFS. At present, the DFS with iron and iodine is reaching 60 million people in India. This important health intervention technology through food fortification has the potential to be scaled globally to ensure a world free from iron deficiency anemia.
Background: Children participating in the Integrated Child Development Service (ICDS) in India have high rates of iron and vitamin A deficiency. Objective: The objective was to assess the efficacy of a premix fortified with iron and vitamin A and added at the community level to prepared khichdi, a rice and dal mixture, in increasing iron and vitamin A stores and decreasing the prevalence of iron deficiency, anemia, and vitamin A deficiency. Design: This cluster, randomized, double-blind, controlled trial was initiated in 30 Anganwadi centers (daycare centers) in West Bengal state, India. Children aged 36 -66 mo (n ҃ 516) attending villagebased ICDS centers were randomly assigned to receive either a fortified or a nonfortified premix for 24 wk. Blood was drawn at 0 and 24 wk by venipuncture for the measurement of hemoglobin, serum ferritin, and serum retinol. Results: The change in the hemoglobin concentration of anemic children was significantly different between fortified and nonfortified khichdi groups (P 0.001). Prevalence rates of anemia, iron deficiency, and iron deficiency anemia were significantly lower after 24 wk in the fortified-khichdi group than in the nonfortified-khichdi group (P 0.001). There were no significant differences in serum retinol concentrations or in the prevalence of vitamin A deficiency between the fortified-and nonfortified-khichdi groups. Conclusion: A premix fortified with iron, vitamin A, and folic acid and added to supplementary food at the community level can be effective at increasing iron stores and reducing the prevalence of iron deficiency and anemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.