Considerable effort is being expended on the development of efficient silicon light-emitting devices compatible with silicon-based integrated circuit technology. Although several approaches are being explored, all presently suffer from low emission efficiencies, with values in the 0.01-0.1% range regarded as high. Here we report a large increase in silicon light-emitting diode power conversion efficiency to values above 1% near room temperature-close to the values of representative direct bandgap emitters of a little more than a decade ago. Our devices are based on normally weak one- and two-phonon assisted sub-bandgap light-emission processes. Their design takes advantage of the reciprocity between light absorption and emission by maximizing absorption at relevant sub-bandgap wavelengths while reducing the scope for parasitic non-radiative recombination within the diode. Each feature individually is shown to improve the emission efficiency by a factor of ten, which accounts for the improvement by a factor of one hundred on the efficiency of baseline devices.
Pregnancy rate following one cycle of IVF and ET can be as high as 60%. But even in the very successful units, some couples fail repeatedly. The causes for repeated implantation failure (RIF) may be because of reduced endometrial receptivity, embryonic defects or multifactorial causes. Various uterine pathologies, such as thin endometrium, altered expression of adhesive molecules and immunological factors, may decrease endometrial receptivity, whereas genetic abnormalities of the male or female, sperm defects, embryonic aneuploidy or zona hardening are among the embryonic reasons for failure of implantation. Endometriosis and hydrosalpinges may adversely influence both. In this mini review, we discuss the suggested methods for evaluation and treatment of RIF: repeated hysteroscopy, myomectomy, endometrial stimulation, immunotherapy, preimplantation genetic screening (PGS), assisted hatching, zygote intra-Fallopian transfer (ZIFT), co-culture, blastocyst transfer, cytoplasmic transfer, tailoring stimulation protocols and salpingectomy for hydrosalpinges.
Large energy shifts in the luminescence emission from strained InGaAs quantum dots are observed as a result of postgrowth annealing and also when raising the upper cladding layer growth temperatures. These blueshifts occur concurrently with narrowing (from 61 to 24 meV) of the full width at half-maxima for the emission from the quantum dot ensemble. These energy shifts can be explained by interdiffusion or intermixing of the interfaces rather than strain effects due to variations in capping layer thickness. Temperature behavior of the luminescence in annealed and nonannealed samples indicates a change in the shape and depth of the quantum dot confining potential. Quenching of the wetting layer luminescence after interdiffusion is also observed.
The organic derivatization of silicon-based nanoporous photonic crystals is presented as a method to immobilize peptides for the detection of protease enzymes in solution. A narrow-line-width rugate filter, a one-dimensional photonic crystal, is fabricated that exhibits a high-reflectivity optical resonance that is sensitive to small changes in the refractive index at the pore walls. To immobilize peptide in the pore of the photonic crystal, the hydrogen-terminated silicon surface was first modified with the alkene 10-succinimidyl undecenoate via hydrosilylation. The monolayer with the succinimide ester moiety at the distal end served the dual function of protecting the underlying silicon from oxidation as well as providing a surface suitable for subsequent derivatization with amines. The surface was further modified with 1-aminohexa(ethylene glycol) (EG(6)) to resist nonspecific adsorption of proteins common in complex biological samples. The distal hydroxyl of the EG(6) is activated using the solid-phase coupling reagent disuccinimidyl carbonate for selective immobilization of peptides as protease recognition elements. X-ray photoelectron spectroscopy analysis reveals high activation and coupling efficiency at each stage of the functionalization. Exposure of the peptide-modified crystals to the protease subtilisin in solution causes a change in the refractive index, resulting in a shift of the resonance to shorter wavelengths, indicating cleavage of organic material within the pores. The lowest detected concentration of enzyme was 37 nM (7.4 pmol in 200 microL).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.