Chromosome segregation errors are a significant cause of aneuploidy among human neonates and often result from errors in female meiosis that occur during fetal life. For the latter reason, little is known about chromosome dynamics during female prophase I. Here, we analyzed chromosome reorganization, and centromere and telomere dynamics in meiosis in the human female by immunofluorescent staining of the SYCP3 and SYCP1 synaptonemal complex proteins and the course of recombinational DNA repair by IF of phospho-histone H2A.X (gamma-H2AX), RPA and MLH1 recombination proteins. We found that SYCP3, but not SYCP1, aggregates appear in the preleptotene nucleus and some persist up to pachytene. Telomere clustering (bouquet stage) in oocytes lasted from late-leptotene to early pachytene-significantly longer than in the male. Leptotene and zygotene oocytes and spermatocytes showed strong gamma-H2AX labeling, while gamma-H2AX patches, which colocalized with RPA, were present on SYCP1-tagged pachytene SCs. This was rarely seen in the male and may suggest that synapsis installs faster with respect to progression of recombinational double-strand break repair or that the latter is slower in the female. It is speculated that the presence of gamma-H2AX into pachytene highlights female-specific peculiarities of recombination, chromosome behavior and checkpoint control that may contribute to female susceptibility for aneuploidy.
The intrachromosomal location of the telomeric sequence in the crab-eating macaque, Macaca fascicularis (F. Cercopithecidae, Catarrhini) has been analysed by fluorescent in situ hybridisation with a long synthetic (TTAGGG)(n) probe. A total of 237 metaphases was analysed. As expected, all telomeres hybridised with the probe and 90 intrachromosomal loci with different hybridisation frequencies were also detected. The chromosomal location of interstitial telomeric sequences in M. fascicularis and in Homo sapiens was then compared, 37 sites (41.11%) being found to be conserved. Some of these sequences can be derived from rearrangements, such as inversions (MFA13q23) or fusions (MFA2p13 and MFA13p12), that have taken place during karyotype evolution.
ZOO-FISH (Fluorescent "in vitro" hybridization) was used to establish the chromosomal homology between humans (HSA) and Cebus nigrivitatus (CNI) and Ateles belzebuth hybridus (ABH). These two species belong to different New World monkey families (Cebidae and Atelidae, respectively) which differ greatly in chromosome number and in chromosome morphology. The molecular results were followed by a detailed banding analysis. The ancestral karyotype of Cebus was then determined by a comparison of in situ hybridization results, as well as chromosomal morphology and banding in other Platyrrhini species. The karyotypes of the four species belonging to the genus Cebus differ from each other by three inversions and one fusion as well as in the location and amounts of heterochromatin. Results obtained by ZOO-FISH in ABH are in general agreement with previous gene-mapping and in situ hybridization data in Ateles, which show that spider monkeys have highly derived genomes. The chromosomal rearrangements detected between HSA and ABH on a band-to-band basis were 27 fusions/fissions, 12 centromeric shifts, and six pericentric inversions. The ancestral karyotype of Cebus was then compared with that of Ateles. The rearrangements detected were 20 fusions/fissions, nine centromeric shifts, and five inversions. Atelidae species are linked by a fragmentation of chromosome 4 into three segments forming an association of 4/15, while Ateles species are linked by 13 derived associations. The results also helped clarify the content of the ancestral platyrrhine karyotype and the mode of chromosomal evolution in these primates. In particular, associations 2/16 and 5/7 should be included in the ancestral karyotype of New World monkeys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.