We investigate whether and how the quantum Zeno effect, i.e., the inhibition of quantum evolution by frequent measurements, can be employed to isolate a quantum dot from its surrounding electron reservoir. In contrast to the often studied case of tunneling between discrete levels, we consider the tunnelling of an electron from a continuum reservoir to a discrete level in the dot. Realizing the quantum Zeno effect in this scenario can be much harder because the measurements should be repeated before the wave packet of the hole left behind in the reservoir moves away from the vicinity of the dot. Thus, the required repetition rate could be lowered by having a flat band (with a slow group velocity) in resonance with the dot or a sufficiently small Fermi velocity or a strong external magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.