Glucocorticoids are hormones that regulate several functions in living organisms and synthetic glucocorticoids are the most powerful anti-inflammatory pharmacological tool that is currently available. Although glucocorticoids have an immunosuppressive effect on immune cells, they exert multiple and sometimes contradictory effects on neutrophils. From being extremely sensitive to the anti-inflammatory effects of glucocorticoids to resisting glucocorticoid-induced apoptosis, neutrophils are proving to be more complex than they were earlier thought to be. The aim of this review is to explain these complex pathways by which neutrophils respond to endogenous or to exogenous glucocorticoids, both under physiological and pathological conditions.
In many biomedical contexts ranging from chemotherapy to tissue engineering, it is beneficial to sequentially present bioactive payloads. Explicit control over the timing and dose of these presentations is highly desirable. Here, we present a capsule-based delivery system capable of rapidly releasing multiple payloads in response to ultrasonic signals. In vitro, these alginate capsules exhibited excellent payload retention for up to 1 week when unstimulated and delivered their entire payloads when ultrasonically stimulated for 10 to 100 s. Shorter exposures (10 s) were required to trigger delivery from capsules embedded in hydrogels placed in a tissue model and did not result in tissue heating or death of encapsulated cells. Different types of capsules were tuned to rupture in response to different ultrasonic stimuli, thus permitting the sequential, on-demand delivery of nanoparticle payloads. As a proof of concept, gold nanoparticles were decorated with bone morphogenetic protein-2 to demonstrate the potential bioactivity of nanoparticle payloads. These nanoparticles were not cytotoxic and induced an osteogenic response in mouse mesenchymal stem cells. This system may enable researchers and physicians to remotely regulate the timing, dose, and sequence of drug delivery on-demand, with a wide range of clinical applications ranging from tissue engineering to cancer treatment.
The glucocorticoid-induced leucine zipper (GILZ) gene is a pivotal mediator of the anti-inflammatory effects of glucocorticoids (GCs) that are known to regulate the function of both adaptive and innate immunity cells. Our aim was to investigate the role of GILZ in GC-induced inhibition of neutrophil migration, as this role has not been investigated before. We found that GILZ expression was induced by dexamethasone (DEX), a synthetic GC, in neutrophils, and that it regulated migration of these cells into inflamed tissues under DEX treatment. Of note, inhibition of neutrophil migration was not observed in GILZ-knockout mice with peritonitis that were treated by DEX. This was because DEX was unable to up-regulate annexin A1 (Anxa1) expression in the absence of GILZ. Furthermore, we showed that GILZ mediates Anxa1 induction by GCs by transactivating Anxa1 expression at the promoter level via binding with the transcription factor, PU.1. The present findings shed light on the role of GILZ in the mechanism of induction of Anxa1 by GCs. As Anxa1 is an important protein for the resolution of inflammatory response, GILZ may represent a new pharmacologic target for treatment of inflammatory
Glucocorticoid-induced leucine zipper (GILZ) exerts anti-inflammatory effects on the immune cells. However, less is known about GILZ function in neutrophils. We aimed to define the specific role of GILZ in basal neutrophil activity during an inflammatory response. GILZ knockdown resulted in a persistent activation state of neutrophils, as evidenced by increased phagocytosis, killing activity, and oxidative burst in GILZ-knockout (KO) neutrophils. This enhanced response caused severe disease in a dinitrobenzene sulfonic acid (DNBS)-induced colitis model, where GILZ-KO mice had prominent granulocytic infiltrate and excessive inflammatory state. We used a Candida albicans intraperitoneal infection model to unravel the intracellular pathways affected by GILZ expression in activated neutrophils. GILZ-KO neutrophils had stronger ability to clear the infectious agent than the wild-type (WT) neutrophils, and there was more activation of the NOX2 (NADPH oxidase 2) and p47 phox proteins, which are directly involved in oxidative burst. Similarly, the MAPK pathway components, that is, ERK and p38, which are involved in the oxidative burst pathway, were highly phosphorylated in GILZ-KO neutrophils. Evaluation of GILZ expression kinetics during C. albicans infection revealed down-regulation that correlated inversely with the state of neutrophil activation, which was evaluated as oxidative burst. Overall, our findings define GILZ as a regulator of neutrophil functions, as its expression contributes to limiting neutrophil activation by reducing the activation of the signaling pathways that control the basal neutrophil functions. Controlling GILZ expression could help regulate a continuous inflammatory state that can result in chronic inflammatory and autoimmune diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.