We investigate the spectroscopic magnetic excitations in molecular magnets with complex intermediate structure among the magnetic ions. Our approach consists in introducing a modified spin Hamiltonian that allows for discrete coupling parameters accounting for all energetically favorable spatial distributions of the valence electrons along the exchange bridges connecting the constituent magnetic ions. We discuss the physical relevance of the constructed Hamiltonian and derive its eigenvalues. The model is applied to explore the magnetic excitations of the tetrameric molecular magnet Ni 4 Mo 12 . Our results are in a very good agreement with the available experimental data. We show that the experimental magnetic excitations in the named tetramer can be traced back to the specific geometry and complex chemical structure of the exchange bridges leading to the splitting and broadness of the peaks centered about 0.5 meV and 1.7 meV.
We develop a structured theoretical framework used in our recent articles (2019 Eur. Phys. J. B
92 93 and 2020 Phys. Rev. B
101 094427) to characterize the unusual behavior of the magnetic spectrum, magnetization and magnetic susceptibility of the molecular magnet Ni4Mo12. The theoretical background is based on the molecular orbital theory in conjunction with the multi-configurational self-consistent field method and results in a post-Hartree–Fock scheme for constructing the corresponding energy spectrum. Furthermore, we construct a bilinear spin-like Hamiltonian involving discrete coupling parameters accounting for the relevant spectroscopic magnetic excitations, magnetization and magnetic susceptibility. The explicit expressions of the eigenenergies of the ensuing Hamiltonian are determined and the physical origin of broadening and splitting of experimentally observed peaks in the magnetic spectra is discussed. To demonstrate the efficiency of our method we compute the spectral properties of a spin-one magnetic dimer. The present approach may be applied to a variety of magnetic units based on transition metals and rare Earth elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.