Applying computationally expensive simulations in design or process optimization results in long-running solution processes even when using a state-of-the-art distributed algorithm and hardware. Within these simulation-based optimization problems the optimizer has to treat the simulation systems as black-boxes. The distributed solution of this kind of optimization problem demands efficient utilization of resources (i.e. processors) and evaluation of the solution quality. Analyzing the parallel performance is therefore an important task in the development of adequate distributed approaches taking into account the numerical algorithm, its implementation, and the used hardware architecture. In this paper, simulation-based optimization problems are characterized and a distributed solution algorithm is presented. Different performance analysis techniques (e.g. scalability analysis, computational complexity) are discussed and a new approach integrating parallel performance and solution quality is developed. This approach combines a priori and a posteriori techniques and can be applied in early stages of the solution process. The feasibility of the approach is demonstrated by applying it to three different classes of simulation-based optimization problems from groundwater management. Copyright Springer-Verlag Berlin/Heidelberg 2005Performance evaluation, simulation-based optimization, distributed computing, scalability, surrogate, neural networks.,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.