Piroxicam is a nonsteroidal anti-inflammatory drug that is practically insoluble in water. The oral absorption rate of piroxicam is dependent on its dissolution rate in the GI tract. The aim of this study was to enhance the dissolution of piroxicam by a microcrystallization technique. The preparation of microcrystals of piroxicam was done by two methods, solvent change and pH shift. In the solvent-change method, the drug was dissolved in acetone, and the stabilizer was dissolved in water. The aqueous phase was added to acetone under homogenization in an ice bath for 1 min. In the pH-shift method, the drug and stabilizer were both dissolved in 0.1 N NaOH (pH 12) using homogenization. The pH was adjusted to 3 using 0.1 N hydrochloric acid. Dissolution testing was carried out in a hydrochloric acid medium using the rotating basket method. Particle size and morphology, FTIR, DSC, XRD, and surface area of the microcrystals were studied. The effects of drug and stabilizer concentration and homogenization rate on particle size and dissolution efficiency were studied statistically using a D-optimal design. The dissolution efficiency in both methods was increased about 3-to 4-fold. The particle size in both methods was decreased in comparison with untreated drug. Maximum dissolution and minimum particle size were obtained by the solvent-change method. According to the results, both microcrystallization methods are effective in the modification of the crystalline the habit of piroxicam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.