AbstractÐThis paper describes a hidden Markov model-based approach designed to recognize off-line unconstrained handwritten words for large vocabularies. After preprocessing, a word image is segmented into letters or pseudoletters and represented by two feature sequences of equal length, each consisting of an alternating sequence of shape-symbols and segmentationsymbols, which are both explicitly modeled. The word model is made up of the concatenation of appropriate letter models consisting of elementary HMMs and an HMM-based interpolation technique is used to optimally combine the two feature sets. Two rejection mechanisms are considered depending on whether or not the word image is guaranteed to belong to the lexicon. Experiments carried out on real-life data show that the proposed approach can be successfully used for handwritten word recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.