The modulation of the septohippocampal cholinergic pathway by glutamatergic or GABAergic inputs was studied by monitoring the outflow of ACh collected via a transversal microdialysis probe implanted into the hippocampus and other brain areas of freely moving rats. In one set of experiments a transversal microdialysis membrane was inserted in the dorsal hippocampus, drugs were administered intracerebroventricularly through a cannula implanted in the lateral ventricle, and ACh outflow in the dialysate was measured by an HPLC method with an electrochemical detector. The dialysis membrane was usually perfused with Ringer's solution containing 7 microM physostigmine sulfate. Intracerebroventricular injections of the NMDA antagonists 3-((RS)-2- carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP; 1–50 nmol), MK801 (0.5–20 nmol), and D(-)-2-amino-7-phosphonoheptanoic acid (100 nmol) brought about an increase in hippocampal ACh outflow while the non-NMDA antagonist 6,7-dinitroquinoxaline-2,3-dione (0.25–20 nmol) was without effect. The increase in ACh outflow following CPP administration was dose dependent and reached a maximum of about 500%. It was abolished by TTX (0.5 microM) delivered locally to the hippocampus via the dialysis membrane and prevented by intracerebroventricular injection of the GABA agonist muscimol (5 nmol). In a second set of experiments, one microdialysis membrane was inserted in the dorsal hippocampus to detect ACh outflow and another in the septum to administer drugs locally and at the same time detect septal GABA outflow. The septal dialysis membrane was perfused with Ringer's solution without physostigmine, and GABA levels in the dialysate were measured by an HPLC method with a fluorescence detector. CPP (100 microM) perfused through the septum resulted in a decrease in septal GABA outflow and a concomitant increase in hippocampal ACh outflow. Muscimol (100 microM) administration into the septum abolished the effect of CPP on hippocampal ACh outflow but did not affect septal GABA outflow. These results demonstrate that in the septum NMDA receptors tonically activate GABAergic neurons which in turn inhibit the cholinergic septohippocampal neurons.
Background and purpose: Activation of adenosine A2A receptors in the CA1 region of rat hippocampal slices during oxygen-glucose deprivation (OGD), a model of cerebral ischaemia, was investigated. Experimental approach: We made extracellular recordings of CA1 field excitatory postsynaptic potentials (fepsps) followed by histochemical and immunohistochemical techniques coupled to Western blots. Key results: OGD (7 or 30 min duration) elicited an irreversible loss of fepsps invariably followed by the appearance of anoxic depolarization (AD), an unambiguous sign of neuronal damage. The application of the selective adenosine A2A receptor antagonist, ZM241385 (4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo{2,3-a}{1,3,5}triazin-5-ylamino]ethyl)phenol; 100-500 nmol·L -1 ) prevented or delayed AD appearance induced by 7 or 30 min OGD and protected from the irreversible fepsp depression elicited by 7 min OGD. Two different selective adenosine A2A receptor antagonists, SCH58261 and SCH442416, were less effective than ZM241385 during 7 min OGD. The extent of CA1 cell injury was assessed 3 h after the end of 7 min OGD by propidium iodide. Substantial CA1 pyramidal neuronal damage occurred in untreated slices, exposed to OGD, whereas injury was significantly prevented by 100 nmol·L -1 ZM241385. Glial fibrillary acid protein (GFAP) immunostaining showed that 3 h after 7 min OGD, astrogliosis was appreciable. Western blot analysis indicated an increase in GFAP 30 kDa fragment which was significantly reduced by treatment with 100 nmol·L -1 ZM241385.
Conclusions and implications:In the CA1 hippocampus, antagonism of A2A adenosine receptors by ZM241385 was protective during OGD (a model of cerebral ischaemia) by delaying AD appearance, decreasing astrocyte activation and improving neuronal survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.