Mass spectrometry combined with database searching has become the preferred method for identifying proteins in proteomics projects. Proteins are digested by one or several enzymes to obtain peptides, which are analyzed by mass spectrometry. We introduce a new family of scoring schemes, named OLAV, aimed at identifying peptides in a database from their tandem mass spectra. OLAV scoring schemes are based on signal detection theory, and exploit mass spectrometry information more extensively than previously existing schemes. We also introduce a new concept of structural matching that uses pattern detection methods to better separate true from false positives. We show the superiority of OLAV scoring schemes compared to MASCOT, a widely used identification program. We believe that this work introduces a new way of designing scoring schemes that are especially adapted to high-throughput projects such as GeneProt large-scale human plasma project, where it is impractical to check all identifications manually.
We present a new approach capable of assigning charge states to peptides based on both their intact mass spectrum and their fragmentation mass spectrum. More specifically, our approach aims at fully exploiting available information to improve correct charge assignment rate. This is achieved by using information provided by the fragmentation spectrum extensively. For low-resolution spectra, charge assignment based on fragmentation mass spectrum is better than charge assignment based on intact peptide signal only. We introduce two methods that allow to integrate information contributing to successful peptide charge state assignment. We demonstrate the performance of our algorithms on large ion trap data sets. The application of these algorithms to large-scale proteomics projects can save significant computation time and have a positive impact on identification false positive rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.