Hypoglycin A (HGA) in seeds of Acer spp. is suspected to cause seasonal pasture myopathy in North America and equine atypical myopathy (AM) in Europe, fatal diseases in horses on pasture. In previous studies, this suspicion was substantiated by the correlation of seed HGA content with the concentrations of toxic metabolites in urine and serum (MCPA-conjugates) of affected horses. However, seed sampling was conducted after rather than during an outbreak of the disease. The aim of this study was to further confirm the causality between HGA occurrence and disease outbreak by seed sampling during an outbreak and the determination of i) HGA in seeds and of ii) HGA and MCPA-conjugates in urine and serum of diseased horses. Furthermore, cograzing healthy horses, which were present on AM affected pastures, were also investigated. AM-pastures in Germany were visited to identify seeds of Acer pseudoplatanus and serum (n = 8) as well as urine (n = 6) from a total of 16 diseased horses were analyzed for amino acid composition by LC-ESI-MS/MS, with a special focus on the content of HGA. Additionally, the content of its toxic metabolite was measured in its conjugated form in body fluids (UPLC-MS/MS). The seeds contained 1.7–319.8 μg HGA/g seed. The content of HGA in serum of affected horses ranged from 387.8–8493.8 μg/L (controls < 10 μg/L), and in urine from 143.8–926.4 μg/L (controls < 10 μg/L), respectively. Healthy cograzing horses on AM-pastures showed higher serum (108.8 ± 83.76 μg/L) and urine concentrations (26.9 ± 7.39 μg/L) compared to control horses, but lower concentrations compared to diseased horses. The range of MCPA-carnitine and creatinine concentrations found in diseased horses in serum and urine were 0.17–0.65 mmol/L (controls < 0.01), and 0.34–2.05 μmol/mmoL (controls < 0.001), respectively. MCPA-glycine levels in urine of cograzing horses were higher compared to controls. Thus, the causal link between HGA intoxication and disease outbreak could be further substantiated, and the early detection of HGA in cograzing horses, which are clinically normal, might be a promising step in prophylaxis.
Summary Hypoglycin A (HGA) was detected in blood and urine of a horse suffering from atypical myopathy (AM; Day 2, serum, 8290 μg/l; urine: Day 1, 574, Day 2, 742 μg/l) and in its cograzing partners with a high variability (46–1570 μg/l serum). Over the period of disease, the level of the toxic metabolites (methylencyclopropylacetic acid [MCPA]‐conjugates) increased in body fluids of the AM horse (MCPA‐carnitine: Day 2, 0.246, Day 3, 0.581 μmol/l serum; MCPA‐carnitine: Day 2, 0.621, Day 3, 0.884 μmol/mmol creatinine in urine) and HGA decreased rapidly (Day 3, 2430 μg/l serum). In cograzing horses MCPA‐conjugates were not detected. HGA in seeds ranged from 268 to 367 μg/g. Although HGA was present in body fluids of healthy cograzing horses, MCPA‐conjugates were not detectable, in contrast to the AM horse. Therefore, increasing concentrations of MCPA‐conjugates are supposed to be linked with the onset of AM and both parameters seem to indicate the clinical stage of disease. However, detection of HGA in body fluids of cograzing horses might be a promising step in preventing the disease.
Horses suffering from equine asthma must consume low-dust forage, with soaking and steaming being suitable methods of hay treatment. The impacts of this treated hay’s subsequent storage and effects on the horses’ chewing activity are largely unknown. Meadow hay was soaked (10–15 °C, 15 min) or steamed (100 °C, 60 min). Microbial counts (colony forming units (CFU)) were determined by culture before and after soaking or steaming, and subsequent storage at 10 and 25 °C for 6, 12 and 24 h (three replicates each). Six horses were fed native, soaked and steamed hay, according to a cross-over design, and chewing parameters were measured. Steaming reduced (p < 0.05) typical mold vs. soaking (0 vs. 50 CFU/g) and yeasts vs. native and steamed hay (0 vs. 102 and 90 CFU/g). Storing soaked hay elevated bacteria, mold, and yeasts (p < 0.05). Within the first 60 min of hay intake, the steamed hay and soaked hay were eaten slower (19.5 and 21.5 g dry matter/min, respectively; p < 0.05) and the steamed hay was chewed more intensely (steamed hay: 3537; native: 2622; and soaked: 2521 chewing cycles/kg dry matter, p < 0.05). Steaming particularly improves the hygienic quality of hay. Soaked hay is not stable when stored and is less accepted by horses.
Objective: Prebiotics are used to support the gastrointestinal health via stimulating particular beneficial parts of the autochthonous microflora and enhancing their metabolism. Horses often suffer from gastrointestinal disturbances after feed changes or behavioral stress in response to transport. Therefore, the supplementation with prebiotic compounds might reduce the risk for intestinal dysregulation. The aim of this study was to investigate the influence of supplementation with Jerusalem artichoke meal (JAM) in a recommended prebiotic dosage on fermentation characteristics in the equine gastrointestinal tract.Methods: Twelve adult healthy horses received crushed oat grains (1.2 g starch/kg BW x d -1 ) and meadow hay (as fed basis; 1.5 kg/100 kg BW x d -1 ). Additionally, they were fed either an apparently prebiotic quantity of fructooligosaccharides (FOS) and inulin (0.2 g/kg BW x d -1 ) via Jerusalem artichoke meal (JAM) or an equal amount of maize cob meal without grains as control (CON) over 3 weeks. On d21, horses were euthanized, gastrointestinal contents were removed from 7 different regions of the gastrointestinal tract, the dry matter (DM) content, pH value and concentrations of short chain fatty acids (SCFA), L-and D-lactate and ammonia were measured.Results: JAM did not had a significant (P < 0.05) effect on any of the measured fermentation products and the pH value as well. Numerically, JAM increased the concentrations of SCFA (P > 0.05), lactate (both isomers, P > 0.05) and ammonia (P < 0.05) predominantly in the stomach but had no impact on the pH value overall. In the hindgut, the stimulation of the microbial activity was limited to the ventral colon only indicated by slightly higher SCFA (P > 0.05) and ammonia (P > 0.05) but lower L-lactate (P > 0.05) concentrations compared to control. Conclusion:FOS and inulin from JAM seem extensively be fermented already in the stomach of horses. The resulting organic acids might elevate the risk for gastric ulcers. Recently the gastric pH was buffered by concomitantly elevated ammonia, which requires a careful delineation of the influences of either individual acids or low pH levels or both together on the mucosa health in both distinct parts of the equine stomach. In the hindgut, the effect of JAM on the microbial activity seems to be much less pronounced than expected or advertised.
Hypoglycin A (HGA) originating from soapberry fruits (litchi, and ackee) seeds or seedlings from the sycamore maple (SM) tree (related to Sapindaceae) may cause Jamaican vomiting sickness in humans and atypical myopathy in horses and ruminants. A possible transfer into dairy cow’s milk cannot be ruled out since the literature has revealed HGA in the milk of mares and in the offal of captured deer following HGA intoxication. From a study, carried out for another purpose, bulk raw milk samples from four randomly selected dairy farms were available. The cows were pastured in the daytime. A sycamore maple tree was found on the pasture of farm No. 1 only. Bulk milk from the individual tank or milk filling station was sampled in parallels and analyzed for HGA by LC-ESI-MS/MS. Measurable concentrations of HGA occurred only in milk from farm No. 1 and amounted to 120 and 489 nmol/L. Despite low and very variable HGA concentrations, the results indicate that the ingested toxin, once eaten, is transferred into the milk. However, it is unknown how much HGA the individual cow ingested during grazing and what amount was transferred into the bulk milk samples. As a prerequisite for a possible future safety assessment, carry-over studies are needed. Furthermore, the toxins’ stability during milk processing should also be investigated as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.