We have studied the low-temperature (T=6K) optical properties of a series of InGaN∕GaN single-quantum-well structures with varying indium fractions. With increasing indium fraction the peak emission moves to lower energy and the strength of the exciton–longitudinal-optical (LO)-phonon coupling increases. The Huang–Rhys factor extracted from the Fabry–Pérot interference-free photoluminescence spectra has been compared with the results of a model calculation, yielding a value of approximately 2nm for the in-plane localization length scale of carriers. We have found reasonable agreement between this length scale and the in-plane extent of well-width fluctuations observed in scanning transmission electron microscopy high-angle annular dark-field images. High-resolution transmission electron microscopy images taken with a short exposure time and a low electron flux have not revealed any evidence of gross indium fluctuations within our InGaN quantum wells. These images could not, however, rule out the possible existence of small-scale indium fluctuations, of the order of a few at. %.
There is a great deal of interest in the underlying causes of efficiency droop in InGaN/GaN quantum well light emitting diodes, with several physical mechanisms being put forward to explain the phenomenon. In this paper we report on the observation of a reduction in the localization induced S-shape temperature dependence of the peak photoluminescence energy with increasing excitation power density. This S-shape dependence is a key fingerprint of carrier localization. Over the range of excitation power density where the depth of the S shape is reduced, we also observe a reduction in the integrated photoluminescence intensity per unit excitation power, i.e., efficiency droop. Hence, the onset of efficiency droop occurs at the same carrier density as the onset of carrier delocalization. We correlate these experimental results with the predictions of a theoretical model of the effects of carrier localization due to local variations in the concentration of the randomly distributed In atoms on the optical properties of InGaN/GaN quantum wells. On the basis of this comparison of theory with experiment we attribute the reduction in the S-shape temperature dependence to the saturation of the available localized states. We propose that this saturation of the localized states is a contributory factor to efficiency droop whereby nonlocalized carriers recombine non-radiatively. V
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.