Historically, severe floods have caused great human and financial losses. Therefore, the flood frequency analysis based on the flood multiple variables including flood peak, volume and duration poses more motivation for hydrologists to study. In this paper, the bivariate and trivariate flood frequency analysis and modeling using Archimedean copula functions is focused. For this purpose, the annual flood data over a 55-year historical period recorded at the Dez Dam hydrometric station were used. The results showed that based on goodness of fit criteria, the Frank function built upon the couple of the flood peak-volume and the couple of the flood peak-duration as well as the Clayton function built upon the flood volume-duration were identified to be the best copula families to be adopted. The trivariate analysis was conducted and the Clayton family was chosen as the best copula function. Thereafter, the common and conditional cumulative probability distribution functions were built and analyzed to determine the periodic "and", "or" and "conditional" bivariate and trivariate flood return periods. The results suggest that the bivariate conditional return period obtained for short-term periods is more reliable than the trivariate conditional return period. Additionally, the trivariate conditional return period calculated for long-term periods is more reliable than the bivariate conditional return period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.