Power transformers in transmission network are utilized for increasing or decreasing the voltage level. Power Transformers fail to connect directly to the consumers that result in the less load fluctuations. Power transformer operation under any abnormal condition decreases the lifetime of the transformer. Power Transformer protection from inrush and internal fault is critical issue in power system because the obstacle lies in the precise and swift distinction between them. Due to the limitation of heterogeneous resources, occurrence of fault poses severe problem. Providing an efficient mechanism to differentiate between faults (i.e. inrush and internal) is the key for efficient information flow. In this paper, the task of detecting inrush and internal fault in power transformers is formulated as an optimization problem which is solved by using Hyperbolic S-Transform Bacterial Foraging Optimization (HS-TBFO) technique. The Gaussian Frequencybased Hyperbolic S-Transform detects the faults at much earlier stage and therefore minimizes the computation cost by applying Cosine Hyperbolic S-Transform. Next, the Bacterial Foraging Optimization (BFO) technique has been proposed and has demonstrated the capability of identifying the maximum number of faults covered with minimum test cases and therefore improving the fault detection efficiency in a wise manner. The HS-TBFO technique is evaluated and validated in various simulation test cases to detect inrush and internal fault in a significant manner. This HS-TBFO technique is investigated based on three phase power transformer embedded in a power system fed from both ends. Results have confirmed that the HS-TBFO technique is capable of categorizing the inrush and internal faults by identifying maximum number of faults with minimum computation cost as compared to the state-of-the-art works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.