In the recent past, experimental studies have shown some advantages of blade lean and sweep in axial compressors. As most of the experimental results are combined with other features, it is difficult to determine the effect of individual parameters on the performance of the compressor. The present numerical studies are aimed at understanding the performance and three-dimensional flow pattern within and at the exit of swept and unswept rotors. Three rotors, namely, unswept, 20° forward swept, and 20° backward swept rotors, are analysed with a specific intention of understanding the three-dimensional flow pattern within the rotors and also the pattern of the blade boundary layer flow. The analysis was done using a fully three-dimensional viscous CFD code CFX-5. Results indicated a reduction in pressure rise with sweep. Backward sweep adversely affects the stall margin. Forward sweep changes the streamline pattern in such a way that the suction surface streamlines are deflected towards the hub and the pressure surface streamlines are deflected towards the casing. An opposite behaviour is observed in the backward swept rotors. High axial velocities reduce the secondary losses near the hub, resulting in a high pressure rise in forward swept rotor.
There are a number of performance indices for a turbomachine on the basis of which its strength is evaluated. In the case of axial compressors, pressure ratio, efficiency and stall margin are few such indices which are of major concern in the design phase as well as in the evaluation of performance of the machine. In the process of improving the blade design, 3D blade stacking, where the aerofoil sections constituting the blade are moved in relation to the flow. Tilting the blade sections to the flow direction (blade sweep) would increase the operating range of an axial compressor due to modifications in the pressure and velocity fields on the suction surface. On the other hand, blade tip gap, though finite, has great influence on the performance of a turbomachine. The present work investigates the combined effect of these two factors on various flow characteristics in a low speed axial flow compressor. The objective of the present paper is thereby confined to study the collective effects of sweep and tip clearance without attempting to suggest an outright new design. In the present numerical work, the performance of Tip Chordline Sweeping (TCS) and Axial Sweeping (AXS) of low speed axial compressor rotor blades are studied. For this, 15 computational domains were modeled for five rotor sweep configurations and three different clearance levels for each rotor. Through the results, 20°AXS rotor is found to be distinctive among all the rotors with highest pressure rise, higher operating range and less tip clearance loss characteristics. TCS rotors produced improved total pressure rise at the low flow coefficients when the tip gap is increased. Hence there is a chance that an “optimum” tip gap exists for the TCS rotors in terms of total pressure coefficient and operating range, while AXS rotors are at their best with the minimum possible clearance.
The present paper reports experimental investigations on the effect of diffuser vane height and position on the performance of a low-speed centrifugal compressor. The diffuser vane height is systematically varied from 0.2 to 0.9 times the diffuser width. In addition, the effect of vane position is examined by fixing the partial vanes to the hub, shroud, or hub and shroud. The compressor performance is determined with these vanes in the vane and low solidity vane diffuser configurations. It is found that there is an optimum height for the diffuser vane height. In the present investigation, it is found to be 0.3 times the diffuser width. The effect of position of the partial vanes on the hub or shroud on the compressor performance is found to be negligible. However, when partial vanes are fixed on the hub and shroud staggered at half spacing, the compressor performance is improved substantially.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.