The MINOS CollaborationArgonne -Athens -Caltech -Chicago -Dubna -Fermilab -Harvard IHEP-Beijing -Indiana -ITEP-Moscow -Lebedev Livermore VCL-London Minnesota -Oxford -Pittsburgh -Protvino -Rutherford -Stanford -SussexTexas A&M -Texas-Austin -Tufts -Western Washington - Executive summaryThe MINOS (Main Injector Neutrino Oscillation Search) experiment is designed to search for neutrino oscillations with a sensitivity significantly greater than has been achieved to date. The phenomenon of neutrino oscillations, whose existence has not been proven convincingly so far, allows neutrinos of one "flavor" (type) to slowly transform themselves into another flavor, and then back again to the original flavor, as they propagate through space or matter.The MINOS experiment is optimized to explore the region of neutrino oscillation "para meter space" (values of the !:l.m 2 and sin 2 29 parameters) suggested by previous investigations of atmospheric neutrinos: the Kamiokande, 1MB, Super-Kamiokande and Soudan 2 experi ments. The study of oscillations in this region with a neutrino beam from the Main Injector requires measurements of the beam after a very long flight path. This in turn requires an intense neutrino beam and a massive detector in order to have an adequate event rate at a great distance from the source.We propose to enhance significantly the physics capabilities of the MINOS experiment by the addition of a Hybrid Emulsion Detector at Soudan, capable of unambigous identification of the neutrino flavor. Recent developments in emulsion experiments make such a detector possible, although significant technological challenges must be overcome. We propose to initiate an R&D effort to identify major potential problems and to develop practical solutions to them.In addition to this primary motivation for this R&D work, we note that the strong and growing interest in studies of neutrino oscillations using neutrino beams from future muon storage rings provides another potential application. These beams will offer significantly higher intensities, albeit of mixed 1I1J-and lie, beams. In order to take full advantage of these beams for neutrino oscillation studies it will be necessary that the detector be capable of determination of the flavor of the final state lepton, and the lepton's charge in a significant fraction of the interactions. At present, an emulsion detector in an external magnetic field appears best suited to offer such capabilities. The R&D effort discussed here will be an important step towards a design of such a future detector. This document is organized as follows:• Chapter 1 summarizes the physics motivation for the proposed emulsion detector,• Chapter 2 briefly reviews the status of the emulsion technology and its aplication to particle physics experiments,• Chapter 3 discusses design considerations for an emulsion detector,• Chapter 4 describes some of the details of a possible detector as well as results from the work up to date,• Chapter 5 outlines the proposed R&D program and summarizes the resources req...
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.