A 200-300 kb region of chromosome 3p14.2, including the fragile site locus FRA3B, is homozygously deleted in multiple tumor-derived cell lines. Exon amplification from cosmids covering this deleted region allowed identification of the human FHIT gene, a member of ther histidine triad gene family, which encodes a protein with 69% similarity to an S. pombe enzyme, diadenosine 5', 5''' P1, P4-tetraphosphate asymmetrical hydrolase. The FHIT locus is composed of ten exons distributed over at least 500 kb, with three 5' untranslated exons centromeric to the renal carcinoma-associated 3p14.2 breakpoint, the remaining exons telomeric to this translocation breakpoint, and exon 5 within the homozygously deleted fragile region. Aberrant transcripts of the FHIT locus were found in approximately 50% of esophageal, stomach, and colon carcinomas.
To determine the role of the FHIT gene, which encompasses the fragile site at 3p14.2, we analyzed 59 tumors of the small cell and non-small cell type by reverse transcription of FHIT mRNA, followed by PCR amplification and sequencing of products. Allelic losses affecting the gene were evaluated by microsatellite polymorphism analysis and genomic alterations by hybridization using cDNA and genomic probes. Small cell lung tumors (80%) and non-small cell lung cancers (40%) showed abnormalities in RNA transcripts of FHIT, and 76% of the tumors exhibited loss of FHIT alleles. Abnormal lung tumor transcripts lack two or more exons of the FHIT gene. Small cell lung cancer tumors and cell lines were analyzed by Southern blotting and showed rearranged BamHI fragments. These data suggest a critical role of the FHIT gene in lung carcinogenesis.
Friedreich ataxia (FRDA) is a progressive neuro-and cardiodegenerative disorder characterized by ataxia, sensory loss, and hypertrophic cardiomyopathy. In most cases, the disorder is caused by GAA repeat expansions in the first introns of both alleles of the FXN gene, resulting in decreased expression of the encoded protein, frataxin. Frataxin localizes to the mitochondrial matrix and is required for iron-sulfur-cluster biosynthesis. Decreased expression of frataxin is associated with mitochondrial dysfunction, mitochondrial iron accumulation, and increased oxidative stress. Ferropotosis is a recently identified pathway of regulated, iron-dependent cell death, which is biochemically distinct from apoptosis. We evaluated whether there is evidence for ferroptotic pathway activation in cellular models of FRDA. We found that primary patient-derived fibroblasts, murine fibroblasts with FRDA-associated mutations, and murine fibroblasts in which a repeat expansion had been introduced (knockin/knockout) were more sensitive than normal control cells to erastin, a known ferroptosis inducer. We also found that the ferroptosis inhibitors ethyl 3-(benzylamino)-4-(cyclohexylamino)benzoate (SRS11-92) and ethyl 3-amino-4-(cyclohexylamino)benzoate, used at 500 nM, were efficacious in protecting human and mouse cellular models of FRDA treated with ferric ammonium citrate (FAC) and an inhibitor of glutathione synthesis [L-buthionine (S,R)-sulfoximine (BSO)], whereas caspase-3 inhibitors failed to show significant biologic activity. Cells treated with FAC and BSO consistently showed decreased glutathione-dependent peroxidase activity and increased lipid peroxidation, both hallmarks of ferroptosis. Finally, the ferroptosis inhibitor SRS11-92 decreased the cell death associated with frataxin knockdown in healthy human fibroblasts. Taken together, these data suggest that ferroptosis inhibitors may have therapeutic potential in FRDA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.