The NASA Time History of Events and Macroscale Interactions during Substorms (THEMIS) project is intended to investigate magnetospheric substorm phenomena, which are the manifestations of a basic instability of the magnetosphere and a dominant mechanism of plasma transport and explosive energy release. The major controversy in substorm science is the uncertainty as to whether the instability is initiated near the Earth, or in the more distant >20 Re magnetic tail. THEMIS will discriminate between the two possibilities by using five in-situ satellites and ground-based all-sky imagers and magnetometers, and inferring the propagation direction by timing the observation of the substorm initiation at multiple locations in the magnetosphere. An array of stations, consisting of 20 all-sky imagers (ASIs) and 30-plus magnetometers, has been developed and deployed in the North American continent, from Alaska to Labrador, for the broad coverage of the nightside magnetosphere. Each ground-based observatory (GBO) contains a white light imager that takes auroral images at a 3-second repetition rate ("cadence") and a magnetometer that records the 3 axis variation of the magnetic field at 2 Hz frequency. The stations return compressed images, "thumbnails," to two central databases: one located at UC Berkeley and the other at the University of Calgary, Canada. The full images are recorded at each station on hard drives, and these devices are physically returned to the two data centers for data copying. 358 S.B. Mende et al.morphology changes until the arc breaks up. The breakup was timed to the nearest frame (<3 s) and located to the nearest latitude degree at about ±3 o E in longitude. The data also showed that a similar breakup occurred in Alaska ∼10 minutes later, highlighting the need for an array to distinguish prime onset.
[1] We present ground-based and in situ observations from March 13, 2007. The THEMIS satellites were in the evening sector conjugate to THEMIS ground-based imagers. At $0507 UT there was an optical onset on inner CPS field lines. This involved near-simultaneous brightening of 1 MLT hour longitudinal segment of the onset arc. The part of the arc that brightened was that closest to the equatorward boundary of the diffuse (proton) aurora. Within one minute, a dipolarization front moved across four THEMIS satellites. Based on their locations, the order in which they detected the dipolarization front, and the auroral evolution, we assert that the expansion phase began earthward of the four satellites and evolved radially outwards. We conclude that this onset occurred in an azimuthally localized region of highly stretched field lines.
Abstract. We show four auroral initial brightening events at substorm onsets focusing on fine structures and their longitudinal dynamics, which were observed by all-sky TV cameras (30-Hz sampling) on January 2008, in Canada. For two initial brightenings started in the field of views of the cameras, we found that they started at longitudinal segments with a size of less than ∼30-60 km. One brightening expanded with wavy structures and the other expanded as a straight arc. Although the two events had different structures, both brightening auroras expanded with an average speed of ∼20 km/s in the first 10 s, and ∼10 km/s in the following 10 s. The other two events show that brightening auroras developed with periodic structures, with longitudinal wavelengths of ∼100-200 km. Assuming that the brightening auroras are mapped to the physical processes occurring in the plasma sheet, we found that the scale size (30-60 km) and the expanding speed (20 km/s) of brightening auroras correspond to the order of ion gyro radii (∼500-1400 km) and Alfvén speed or fast ionflow speed (∼400 km/s), respectively, in the plasma sheet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.