[1] Examination of Geotail measurements in the near-tail (X > À30 R E ) has revealed the presence of small flux ropes in the plasma sheet. A total of 73 flux rope events were identified in the Geotail magnetic field measurements between November 1998 and April 1999. This corresponds to an estimated occurrence frequency of $1 flux rope per 5 hours of central plasma sheet observing time. All of the flux ropes were embedded within high-speed plasma sheet flows with 35 directed Earthward, hV x i = 431 km/s, and 38 moving tailward, hV x i = À451 km/s. We refer to these two populations as ''BBF-type'' and ''plasmoid-type'' flux ropes. The flux ropes were usually several tens of seconds in duration, and the two types were readily distinguished by the sense of their quasisinusoidal ÁB z perturbations, i.e., Ç for the ''BBF'' events and ± for the ''plasmoid'' events. Most typically, a flux rope was observed to closely follow the onset of a high-speed flow within $1-2 min. Application of the Lepping-Burlaga constant-a flux rope model (i.e., J = aB) to these events showed that approximately 60% of each class could be acceptably described as cylindrical, force-free flux ropes. The modeling results yielded mean flux rope diameters and core field intensities of 1.4 R E and 20 nT and 4.4 R E and 14 nT for the BBF and plasmoid-type events, respectively. The inclinations of the flux ropes were small relative to the GSM X-Y plane, but a wide range of azimuthal orientations were determined within that plane. The frequent presence of these flux ropes in the plasma sheet is interpreted as strong evidence for multiple reconnection X-lines (MRX) in the near-tail. Hence, our results suggest that reconnection in the near-tail may closely resemble that at the dayside magnetopause where MRX reconnection has been hypothesized to be responsible for the generation of flux transfer events.
[1] To understand magnetotail dynamics, it is essential to determine where magnetic reconnection takes place in the near-Earth magnetotail during substorms. The Geotail spacecraft thoroughly surveyed the near-Earth plasma sheet at radial distances of 10-31 R E during the years 1995-2003. Thirty-four clear reconnection events were identified using the criterion of strong electron acceleration. Various solar wind parameters prior to each reconnection event were examined in order to find the factor controlling the location of the magnetic reconnection site in the magnetotail. The same analyses were carried out for fast tailward flow events. The most important factor was determined to be the solar wind energy input, which can be expressed by ÀV x  B s , where V x is the x component of the solar wind velocity and B s is the southward component of the interplanetary magnetic field. It is likely that higher efficiency of energy input, rather than the total amount of energy input, primarily controls the location of magnetic reconnection; magnetic reconnection takes place closer to the Earth when efficiency of energy input is higher. The effect of solar wind dynamic pressure is minor. The present result suggests that the tail magnetic reconnection location during substorms is controlled by solar cycle variations in the solar wind.
[1] We have obtained a state-of-the-art picture of substorm-associated evolution of the near-Earth magnetotail and the inner magnetosphere for understanding the substorm triggering mechanism. We performed superposed epoch analysis of Geotail, Polar, and GOES data with 2-min resolution, utilizing a total of 3787 substorms for each of which auroral breakup was determined from Polar UVI or IMAGE FUV auroral imager data. The decrease of the north-south magnetic field associated with plasmoids and the initial total pressure decrease suggest that the magnetic reconnection first occurs in the premidnight tail, on average, at X $ À16 to À20 R E at least 2 min before auroral onset. The magnetic reconnection site is located near the tailward edge of a region of considerably taillike magnetic field lines and intense cross-tail current, which extends from X $ À5 to À20 R E in the premidnight sector. Then the plasmoid substantially evolves tailward of X $ À20 R E immediately after onset. Almost simultaneously with the magnetic reconnection, the dipolarization begins first at X $ À7 to À10 R E 2 min before onset. The dipolarization region then expands tailward as well as in the dawn-dusk directions and earthward. We find that the total pressure generally enhances in association with the dipolarization, with the contribution of high-energy particles. Also, energy release is more significant between the regions of the magnetic reconnection and the initial dipolarization. The present results will be helpful as a reference guide to developing the overall picture of magnetotail evolution and studying the causal relationship between the magnetic reconnection and the dipolarization as well as detailed mechanisms of each of the two processes on the basis of multispacecraft observations.
Abstract. Geotail plasma and magnetic field observations of 24 plasmoids between 21 and 29 R• have been compared with Polar ultraviolet observations of auroral brightenings. Both single and multiple plasmoids almost always corresponded to brightenings, but the brightenings were sometimes weak and spatially limited and did not always grow to a global substorm. Even a case where a plasmoid event occurred with fast postplasmoid flow corresponded to a weak brightening but no substorm. Some brightenings did not correspond to plasmoids, but these brightenings were observed away from the longitude of Geotail, indicating that plasmoids have a small longitudinal extent in the near tail. The plasmoids were occasionally observed before the brightenings but more frequently were observed 0-2 min after the brightenings, with the delays probably due to the transit time to the observation point. It seems likely that formation of a near-Earth neutral line causes each brightening in the polar ionosphere, but these formations do not always lead to a full-fledged substorm. What additional circumstance causes development of a full, large-scale substorm remains an open question.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.