The present study focused on genotoxic properties of the carcinogenic phenylpropanoids α-asarone and β-asarone, which are found in several herbs and spices, such as Acorus calamus or Acorus gramineus. Cytotoxic and genotoxic effects were determined in human liver carinoma HepG2 cells, in hamster lung fibroblast V79 cells and in human cytochrome P450 1A2 and human sulfotransferase 1C2 transfected V79 cells (tV79). The Alamar blue assay was used to measure cytotoxicity of both isomers prior to the identification of DNA damaging properties by single cell gel electrophoresis (comet assay). Furthermore, the phosphorylation status of the histone H2AX, as a response of DNA double strand breaks, was investigated in HepG2 cells by Western blot analysis and visualized by immunofluorescence microscopy. After 24 h of incubation a significant reduction of cell viability was found. Moreover, both asarone isomers induced DNA strand breaks in V79 cells after 1 h of incubation. In tV79 cells even more pronounced DNA damaging properties were exhibited, whereas in HepG2 cells the compounds were found to be less effective. Furthermore, in tV79 cells a significant increase of formamidopyrimidine-DNA-glycosylase-sensitive sites was observed. DNA strand breaks, induced by aA, were to some extent characterized as DNA double strand breaks. In summary, asarone-induced cytotoxicity and genotoxicity is strongly influenced by the cellular metabolic enzyme status and therefore, a contribution of their respective metabolites to in vitro toxicity can be suggested.
Methyleugenol is a substituted alkenylbenzene found in several herbs and spices. It is classified by the European Union's Scientific Committee on Food as a genotoxic carcinogen. We addressed the biological mechanism of the genotoxic properties of methyleugenol and its oxidative metabolites. Methyleugenol and the oxidative metabolites significantly enhanced the DNA damage in human colon carcinoma cells (HT29). Methyleugenol did not affect the protein status of γH2AX, a biomarker of DNA double-strand breaks, whereas its metabolites methyleugenol-2',3'-epoxide and 3'-oxomethylisoeugenol significantly increased the cellular phosphorylated H2AX level. Both of these metabolites also showed a significant induction of micronuclei in HT29 cells. Furthermore, we investigated whether topoisomerase interaction contribute to the observed effect on DNA integrity. Methyleugenol-2',3'-epoxide and 3'-oxomethylisoeugenol inhibited the activity of recombinant topoisomerase I. In HT29 cells, neither methyleugenol nor the metabolites affected the level of topoisomerase protein bound to DNA, excluding a topoisomerase poisoning mode of action. In addition, 3'-oxomethylisoeugenol potently diminished the level of camptothecin-stabilized topoisomerase I/DNA intermediates and camptothecin-induced DNA strand breaks. In conclusion, it could be suggested that 3'-oxomethylisoeugenol may also interact with classical or food-borne topoisomerase I poisons, diminishing their poisoning effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.