We described a spatio-temporal analysis of environmental loading models: atmospheric, continental hydrology, and non-tidal ocean changes, based on multichannel singular spectrum analysis (MSSA). We extracted the common annual signal for 16 different sections related to climate zones: equatorial, arid, warm, snow, polar and continents. We used the loading models estimated for a set of 229 ITRF2014 (International Terrestrial Reference Frame) International GNSS Service (IGS) stations and discussed the amount of variance explained by individual modes, proving that the common annual signal accounts for 16, 24 and 68% of the total variance of non-tidal ocean, atmospheric and hydrological loading models, respectively. Having removed the common environmental MSSA seasonal curve from the corresponding GPS position time series, we found that the residual station-specific annual curve modelled with the least-squares estimation has the amplitude of maximum 2 mm. This means that the environmental loading models underestimate the seasonalities observed by the GPS system. The remaining signal present in the seasonal frequency band arises from the systematic errors which are not of common environmental or geophysical origin. Using common mode error (CME) estimates, we showed that the direct removal of environmental loading models from the GPS series causes an artificial loss in the CME power spectra between 10 and 80 cycles per year. When environmental effect is removed from GPS series with MSSA curves, no influence on the character of spectra of CME estimates was noticed.
We described a spatio-temporal analysis of environmental loading models: atmospheric, continental hydrology, and non-tidal ocean changes, based on multichannel singular spectrum analysis (MSSA). We extracted the common annual signal for 16 different sections related to climate zones: equatorial, arid, warm, snow, polar and continents. We used the loading models estimated for a set of 229 ITRF2014 (International Terrestrial Reference Frame) International GNSS Service (IGS) stations and discussed the amount of variance explained by individual modes, proving that the common annual signal accounts for 16, 24 and 68% of the total variance of non-tidal ocean, atmospheric and hydrological loading models, respectively. Having removed the common environmental MSSA seasonal curve from the corresponding GPS position time series, we found that the residual station-specific annual curve modelled with the least-squares estimation has the amplitude of maximum 2 mm. This means that the environmental loading models underestimate the seasonalities observed by the GPS system. The remaining signal present in the seasonal frequency band arises from the systematic errors which are not of common environmental or geophysical origin. Using common mode error (CME) estimates, we showed that the direct removal of environmental loading models from the GPS series causes an artificial loss in the CME power spectra between 10 and 80 cycles per year. When environmental effect is removed from GPS series with MSSA curves, no influence on the character of spectra of CME estimates was noticed.
We estimated the common seasonal signal (annual oscillation) included in the Global Positioning System (GPS) vertical position time series by using Multichannel Singular Spectrum Analysis (MSSA). We employed time series from 24 International GNSS Service (IGS) stations located in Europe which contributed to the newest ITRF2014 (International Terrestrial Reference Frame). The MSSA method has an advantage over the traditional modelling of seasonal signals by the Least-Squares Estimation (LSE) and Singular Spectrum Analysis (SSA) approaches because it can extract time-varying and common seasonal oscillations for stations located in the considered area. Having estimated the annual curve with LSE, we may make a misfit of 3 mm when a peakto-peak variations of seasonal signals are to be estimated due to the time-variability of seasonal signal. A variance of data modelled as annual signal with SSA and MSSA differs of 3 % at average what proves that the MSSA-curves contain only time-varying and common seasonal signal and leave the station-specific part, local phenomena and power-law noise intact. In contrast to MSSA, these effects are modelled by SSA. The differences in spectral indices of power-law noise between MSSA and LSE estimated with Maximum Likelihood Estimation (MLE) are closer to zero than the ones between SSA and LSE, which means that MSSA curves do not contain site-specific noise as much as the SSA curves do.
ARTICLE INFO
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.