We illustrate for a solid-liquid interface how local atomic order in a metallic melt (NiZr) transforms into a massive in-plane ordering at the surface of a crystal (bcc Zr) when commensurability is given between the solute-centered clusters of the melt and the periodic potential of the crystalline surface for a given orientation. Linking molecular dynamics simulation to phase-field modeling allows us to estimate quantitatively the influence of the surface effect on the growth kinetics. This study sheds new light on the relation between the undercooling ability (e.g., in the case of glass-forming alloys) and the pronounced local order in the melt.
We extend the usual static view of short range order in metallic glasses to a dynamical model of local order. We use an atomistic simulation of a NiZr glass to investigate time-dependent fluctuations of the atomic environment. We show that, even in the "frozen" glass, the solute-centered clusters change their identities between distinct polyhedron types. The frequency spectrum of these transitions exhibits a characteristic peak which we show to be related to a universal vibrational anomaly of disordered solids: the controversial boson peak.
By combining molecular dynamics (MD) simulations with phase-field (PF) and phase-field crystal (PFC) modeling we study collision-controlled growth kinetics from the melt for pure Fe. The MD/PF comparison shows, on the one hand, that the PF model can be properly designed to reproduce quantitatively different aspects of the growth kinetics and anisotropy of planar and curved solid-liquid interfaces. On the other hand, this comparison demonstrates the ability of classical MD simulations to predict morphology and dynamics of moving curved interfaces up to a length scale of about 0.15 μm. After mapping the MD model to the PF one, the latter permits to analyze the separate contribution of different anisotropies to the interface morphology. The MD/PFC agreement regarding the growth anisotropy and morphology extends the trend already observed for the here used PFC model in describing structural and elastic properties of bcc Fe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.