The targeted shaping of femtosecond pulses in 4f pulse shapers is complicated by, among other factors, the crosstalk between adjacent pixels of a spatial light modulator (SLM). Current methods for the crosstalk evaluation require setting up a different experiment, which is highly inconvenient. Here, we propose a simple procedure to extract the pixel crosstalk within the standard SLM calibration used in pulse shaping. The calibration is based on an analysis of the contrast of a periodic modulation in the spectra induced via SLM. We demonstrate the calibration procedure on a liquid-crystal-based SLM and show that we attain a constant crosstalk effect represented by a Gaussian function with
σ
=
1.0
pix over a broad operational range of the SLM.
Thin films made of formamidinium lead iodide (FAPbI3) perovskites prepared by a two-step sequential deposition method using various solvents for formamidinium iodide (FAI) - isopropanol, n-butanol and tert-butanol, were studied with the aim of finding a correlation between morphology and solvent properties to improve film quality. They were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and their photophysical properties were studied by means of absorption and photoluminescence (PL) spectroscopies. XRD patterns, absorption and PL spectra proved α-phase formation for all selected solvents. An excessive amount of PbI2 found in perovskite films prepared with n-butanol indicates incomplete conversion. Thin film morphology, such as grain and crystallite size, depended on the solvent. Using tert-butanol, thin films with a very large grain size of up to several micrometers and with preferred crystallite orientation were fabricated. The grain size increased as follows: 0.2–0.5, 0.2–1 and 2–5 µm for isopropanol, n-butanol and tert-butanol, respectively. A correlation between the grain size and viscosity, electric permittivity and polarizability of the solvent could be considered. Our results, including fabrication of perovskite films with large grains and fewer grain boundaries, are important and of interest for many optoelectronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.