3D pitch rotation of microparticles and cells assumes importance in a wide variety of applications in biology, physics, chemistry and medicine. Applications such as cell imaging and injection benefit from pitch-rotational manipulation. Generation of such motion in single beam optical tweezers has remained elusive due to complicacies of generating high enough ellipticity perpendicular to the direction of propagation. Further, trapping an extended object at two locations can only generate partial pitch motion by moving one of the foci in the axial direction. Here, we use hexagonal-shaped upconverting particles and single cells trapped close to a goldcoated glass cover slip in a sample chamber to generate complete 360 degree and continuous pitch motion even with a single optical tweezers beam. The tweezers beam passing through the gold surface is partially absorbed and generates a hot-spot to produce circulatory convective flows in the vicinity which rotates the objects. The rotation rate can be controlled by the intensity of the laser light and the thickness of the gold layer. Thus such a simple configuration can turn the particle in the pitch sense. The circulatory flows in this technique have a diameter of about 5 µm which is smaller than those reported using acousto-fluidic techniques.
Upconverting nanoparticles typically absorb low frequency radiation and emit at higher frequencies relying upon multiphoton processes. One such type of particle is NaYF 4 :Yb,Er, which absorbs at 975 nm while emitting in visible radiation. Such particles have routinely been optically trapped. However, we find that trapping at the absorption maximum induces non-equilibrium features to the system. When we ascertain the Mean Square Displacement (MSD) of the axial motion, we find features that resemble Hot Brownian Motion (HBM) in active particles. We characterize the HBM observed here and find that the effective translational velocity of the system is 36 nm/s, small enough to be compensated by the optical tweezers. Thus, we have a system which is optically confined and stationary but in non-equilibrium, which we can also use to study non-equilibrium fluctuations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.