Sentiment Analysis task helps us to estimate the opinion of a person from his reviews or comments about a product, person, politics, etc., Cross-Domain Sentiment Analysis (CDSA) empowers the Sentiment models with the ability to forecast the opinion of a review coming from a different domain other than the domain where the model is trained. The challenge of the CDSA model relies on bridging the relationship between words in the source and target domain. Several types of research in CDSA focus on determining the domain invariant features to adapt the model to the target domain, such model shows less focus on aspect terms of the sentence. We propose CWAN (Collaborative Word Attention Network), which integrates aspects and domain invariant features of the sentences to calculate the sentiment. CWAN uses attention networks to capture the domain-independent features and aspects of the sentences. The sentence and aspect attention models are executed collaboratively to determine the sentiment of the sentence. Amazon product review dataset is used in this experiment. The performance of the CWAN model is compared with other baseline CDSA models. The results show that CWAN outperforms other baseline models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.