We report on the zinc oxide (ZnO) thin films obtained by the atomic layer deposition (ALD) method using diethyl zinc and water precursors, which allowed us to lower deposition temperature to below 200 °C. The so-obtained “as grown” ZnO layers are polycrystalline and show excitonic photoluminescence (PL) at room temperature, even if the deposition temperature was lowered down to 100 °C. Defect-related PL bands are of low intensity and are absent for layers grown at 140−200 °C. This is evidence that extremely low temperature growth by ALD can result in high quality ZnO thin films with inefficient nonradiative decay channels and with thermodynamically blocked self-compensation processes.
The authors demonstrate herein that by lowering of a growth temperature they can obtain ZnMnO layers with homogeneous Mn distribution, which are free of Mn accumulations and inclusions of foreign phases due to other Mn oxides. These layers (with low Mn content fractions) show paramagnetic phase in room temperature magnetization measurements. Contribution of a high temperature ferromagnetic phase is missing, which the authors relate to blocking of spinodal decomposition of ZnMnO under controlled growth conditions of atomic layer deposition.
The topological crystalline insulator tin telluride is known to host superconductivity when doped with indium (Sn1−xInxTe), and for low indium content (x = 0.04) it is known that the topological surface states are preserved. Here we present the growth, characterization and angle resolved photoemission spectroscopy analysis of samples with much heavier In doping (up to x ≈ 0.4), a regime where the superconducting temperature is increased nearly fourfold. We demonstrate that despite strong p-type doping, Dirac-like surface states persist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.