Over the past decades, the in vitro use of pluripotent cell lines gained a crucial role in toxicology, preclinical drug testing and developmental biology. NTERA2 clone D1 cells were identified as pluripotent cells with high potential for neural differentiation. Although they are commonly used cellular sources in neuropharmacology and neurodevelopmental studies, their endodermal and mesodermal differentiation potential awaits further characterization. Here, we devised improved protocols for hepatogenic and osteogenic differentiation of NTERA2 clone D1 cells. Our in vitro differentiation assays showed significant up-regulation of multiple hepatogenic markers. We also observed robust mineralization and osteogenic marker expression of NTERA2 clone D1 cells upon in vitro osteogenic induction. These results suggest that NTERA2 clone D1 cells may be utilized as an in vitro model system to study various aspects of liver biology and osteogenesis. In addition, tri-lineage differentiation of NTERA2 clone D1 cells may serve as a simple experimental control system when validating pluripotency of other cell types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.