A series of bidentate hydroxypyridinone iron chelators that have therapeutic potential as oral iron chelators, have been studied systematically to determine which properties are the most critical for the mobilization of hepatocyte iron. The relationship between lipid solubility of the free and complexed forms of each chelator and hepatocyte iron release has been investigated as well as the contribution of the binding constant for iron (III). Hydroxypyridin-4- ones that were approximately equally soluble in lipid and aqueous phases were the most active compounds, the partition coefficient of the free chelator appearing to be more critical in determining iron release than that of the iron-complexed form. Highly hydrophilic chelators did not mobilize intracellular iron pools, whereas highly lipophilic compounds were toxic to hepatocytes. The contribution of the binding constant for iron (III) to cellular iron release was assessed by comparing hydroxypyridin-4-ones (log beta 3 = 36) and hydroxypyridin-2- ones (log beta 3 = 32), which possess similar partition coefficients. The results show that the binding for iron (III) is particularly important at low concentrations of chelator (less than 100 mumol/L) and that at higher concentrations (greater than 500 mumol/L) iron mobilization is limited by the available chelatable pool. Measurement of iron release with other chelators confirms the importance of both the lipid solubilities and iron (III)-binding constants to iron mobilization. The most active hydroxypyridin-4-ones released more hepatocyte iron than did deferoxamine when compared at equimolar concentrations. The results suggest that the ability of an iron chelator to enter the cell is crucial for effective iron mobilization and that once within the cell the binding constant of the chelator for iron (III) becomes a dominant factor.
The 59Fe excretion caused by a range of bidentate N-substituted [R group = methyl (CP20), ethyl (CP21), propyl (CP22), isopropyl (CP23), butyl (CP24) or hexyl (CP25)] 3-hydroxypyrid-4-one chelators in iron-overloaded mice is presented. All the compounds cause significant iron excretion when given intraperito-neally, but that the most hydrophobic compounds, CP24 and CP25, were toxic except at low doses. The excretion caused by CP21, CP22 and CP23 were significantly greater than that caused by CP20 and slightly larger than that caused by an equivalent dose of desferrioxamine. These compounds (CP20 through CP24) also caused significant excretion of 59Fe when administered orally. Compounds CP21, CP22 and CP24 were significantly more active than compounds CP20 and CP23. It is concluded that the N-ethyl or N-propyl 3-hydroxy-pyrid-4-ones are the most promising compounds for clinical application. Preliminary experiments using a hexadentate pyrid-2-one, CP130, show that this causes significant 59Fe excretion both when given intraperitoneally or orally
A series of bidentate hydroxypyridinone iron chelators that have therapeutic potential as oral iron chelators, have been studied systematically to determine which properties are the most critical for the mobilization of hepatocyte iron. The relationship between lipid solubility of the free and complexed forms of each chelator and hepatocyte iron release has been investigated as well as the contribution of the binding constant for iron (III). Hydroxypyridin-4- ones that were approximately equally soluble in lipid and aqueous phases were the most active compounds, the partition coefficient of the free chelator appearing to be more critical in determining iron release than that of the iron-complexed form. Highly hydrophilic chelators did not mobilize intracellular iron pools, whereas highly lipophilic compounds were toxic to hepatocytes. The contribution of the binding constant for iron (III) to cellular iron release was assessed by comparing hydroxypyridin-4-ones (log beta 3 = 36) and hydroxypyridin-2- ones (log beta 3 = 32), which possess similar partition coefficients. The results show that the binding for iron (III) is particularly important at low concentrations of chelator (less than 100 mumol/L) and that at higher concentrations (greater than 500 mumol/L) iron mobilization is limited by the available chelatable pool. Measurement of iron release with other chelators confirms the importance of both the lipid solubilities and iron (III)-binding constants to iron mobilization. The most active hydroxypyridin-4-ones released more hepatocyte iron than did deferoxamine when compared at equimolar concentrations. The results suggest that the ability of an iron chelator to enter the cell is crucial for effective iron mobilization and that once within the cell the binding constant of the chelator for iron (III) becomes a dominant factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.