In this paper, a linear parameter varying (LPV) adaptive observer is designed for state estimation and tire cornering stiffness identification based on lateral motorcycle model. The estimation is based on a general Lipstchitz condition, Lyapunov function and is subjected to persistency of excitation conditions. Further, the LPV observer is transformed into Takagi-Sugeno (T-S) fuzzy observer and sufficient conditions, for the existence of the estimator, are given in terms of linear matrix inequalities (LMIs). This method is designed assuming that some of the states are not available, since parametric identification is generally developed assuming that all the system states are available (measured or estimated). Finally, the effectiveness of the proposed estimation method is illustrated through test scenarios performed with the wellknown motorcycle simulator "BikeSim" and by field test using data measurement carried out on experimental motorcycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.