In the presented paper, the effect of impeller geometric parameters on the performance of centrifugal pump has been investigated. This study was performed for different flow rates and rotational speeds, allowing to obtain the performance curve for the centrifugal pump. Three dimensional computational fluid dynamic simulation of the impeller and volute for a centrifugal pump has been performed using ANSYS CFX software (a high-performance computational fluid dynamics software tool that delivers reliable and accurate solutions). The pump has an outside impeller diameter of 205 mm, impeller outlet width of 16 mm, rotational speed 1450 rpm, seven impeller blade and a specific speed of 28. By increasing the impeller outer diameter and outlet width, both net head and power consumed are increased. In addition, it was noticed that the best efficiency point (BEP) was achieved at volume flow rate higher than design flow rate. The performed simulations indicated that; by changing the impeller outer diameter from 200 mm to 210 mm, the flow rate of BEP increases about by 14.7%. By changing the impeller outlet width from 14 mm to 18 mm, the flow rate of BEP increased by about 9%, and the efficiency of BEP reduced by approximately 0.5%. It was also noticed that, increasing the rotational speed will cause an increase in the net head and consumed power. An increase of 13.8% for the flow rate of BEP was observed when changing the rotational speed from 1400 rpm to 1500 rpm, with the same BEP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.